V2AS
问路
意见反馈
↓ 按住下拉
AutoEmbedding论文阅读笔记
目前推荐系统中, 在特征维度上低频特征和高频特征的维度是通过遍历mask特征获得到的auc衰减衡量特征对模型的重要度来决定的. 如果想提升模型效果, 在field层面上 ......
笔记
维度
论文
mathcal
hat
论文解读(AdSPT)《Adversarial Soft Prompt Tuning for Cross-Domain Sentiment Analysis》
Note:[ wechat:Y466551 | 可加勿骚扰,付费咨询 ] 论文信息 论文标题:Adversarial Soft Prompt Tuning for Cross-Domain Sentiment Analysis论文作者:Hui Wu、Xiao ......
text
right
left
mathcal
mathbf
论文解读(MetaAdapt)《MetaAdapt: Domain Adaptive Few-Shot Misinformation Detection via Meta Learning》
Note:[ wechat:Y466551 | 可加勿骚扰,付费咨询 ] 论文信息 论文标题:MetaAdapt: Domain Adaptive Few-Shot Misinformation Detection via Meta Learning论文作者 ......
boldsymbol
论文
theta
Graph
quad
论文解读(IW-Fit)《Better Fine-Tuning via Instance Weighting for Text Classification》
Note:[ wechat:Y466551 | 可加勿骚扰,付费咨询 ] 论文信息 论文标题:Better Fine-Tuning via Instance Weighting for Text Classification论文作者:论文来源:202 ......
mathbf
right
left
论文
微调
论文解读(WIND)《WIND: Weighting Instances Differentially for Model-Agnostic Domain Adaptation》
Note:[ wechat:Y466551 | 可加勿骚扰,付费咨询 ] 论文信息 论文标题:WIND: Weighting Instances Differentially for Model-Agnostic Domain Adaptation论文作者: ......
boldsymbol
theta
mathcal
论文
nabla
论文翻译:2021_Real-Time Denoising and Dereverberation wtih Tiny Recurrent U-Net
论文地址:微型循环U-Net实时降噪和去混响 论文代码: https://github.com/YangangCao/TRUNet https://github.com/amirpashamobinitehrani/tinyrecurrentunet 引用 ......
Net
模型
掩码
混响
Proc
论文解读(CBL)《CNN-Based Broad Learning for Cross-Domain Emotion Classification》
Note:[ wechat:Y466551 | 付费咨询,非诚勿扰 ] 论文信息 论文标题:CNN-Based Broad Learning for Cross-Domain Emotion Classification论文作者:Rong Zeng, Hong ......
boldsymbol
left
right
mathrm
text
论文解读(LightGCL)《LightGCL: Simple Yet Effective Graph Contrastive Learning for Recommendation》
Note:[ wechat:Y466551 | 可加勿骚扰,付费咨询 ] 论文信息 论文标题:LightGCL: Simple Yet Effective Graph Contrastive Learning for Recommendation论文作者:C ......
boldsymbol
论文
Graph
hat
Contrastive
2019QM大作业2-weyl半金属Landau Level
目录 说明 for cnblog QM大作业2——weyl半金属的Landau Level \(\
boldsymbol
{Abstract}\) 说明 Landau Level 自旋与pauli matrix The Schrödinger-Pauli Hamilto ......
frac
boldsymbol
sigma
hbar
tag
NeurIPS 2017 | TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning
在深度神经网络的分布式训练中,梯度和参数同步时的网络开销是一个瓶颈。本文提出了一个名为TernGrad梯度量化的方法,通过将梯度三值化为\({-1, 0, 1}\)来减少通信 ......
梯度
TernGrad
节点
Deep
boldsymbol
V2AS = Way To Ask
V2AS 一个技术分享与创造的静土
手机扫一扫
移动阅读更方便
近15日热搜文章
Paxos协议超级详细解释+简单实例
winds dlib人脸检测与识别库
DevStack部署OpenStack开发环境 - 问题总结
4
C++20初体验——concepts
5
Linux下安装ffmpeg,视频格式转换
6
std::sort为什么保证严格弱序?
7
UPX源码分析——加壳篇
8
Knockout.Js官网学习(数组observable)
9
卷积及理解图像卷积操作的意义
10
查看显卡报错:NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.