V2AS
问路
意见反馈
↓ 按住下拉
论文解读(JKnet)《Representation Learning on Graphs with Jumping Knowledge Networks》
论文信息 论文标题:Representation Learning on Graphs with Jumping Knowledge Networks论文作者:Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ke ......
right
left
节点
mathrm
邻域
Proximal Algorithms 2 Properties
目录 可分和 基本的运算 不动点 fixed points Moreau decomposition 如果\(f\)可分为俩个变量:\(f(x, y)=\varphi(x) + \psi(y)\), 于是: 如果\(f\)是完全可分 ......
lambda
prox
mathbf
mu
alpha
谣言检测()《Data Fusion Oriented Graph Convolution Network Model for Rumor Detection》
论文信息 论文标题:Data Fusion Oriented Graph Convolution Network Model for Rumor Detection论文作者:Erxue Min, Yu Rong, Yatao Bian, Tingyang Xu, Peilin ......
论文
Detection
Rumor
right
Graph
谣言检测(PSIN)——《Divide-and-Conquer: Post-User Interaction Network for Fake News Detection on Social Media》
论文信息 论文标题:Divide-and-Conquer: Post-User Interaction Network for Fake News Detection on Social Media论文作者:Erxue Min, Yu Rong, Yatao Bian, Ti ......
mathbf
mathrm
right
left
post
Sequence Model-week1编程题1(一步步实现RNN与LSTM)
一步步搭建循环神经网络 将在numpy中实现一个循环神经网络 Recurrent Neural Networks (RNN) are very effective for Natural Language Processing and other se ......
shape
gradients
np
rangle
langle
Latex符号
$\hat{x}$ : \(\hat{x}\) $\widehat{x}$ : \(\widehat{x}\) $\tilde{x}$ : \(\tilde{x}\) $\
widetilde
{x}$ : \(\
widetilde
{x}\) $\dot{x}$ : \(\dot{x}\) $\alp ......
符号
1.
排版
LaTeX
alpha
Proximal Algorithms 4 Algorithms
目录 Proximal minimization 解释 Gradient flow 解释1 最大最小算法 不动点解释 Forward-backward 迭代解释 加速 proximal gradient method 交替方向方法 ADMM ......
lambda
nabla
Algorithms
Delta
partial
论文翻译:2023_THLNet: two-stage heterogeneous lightweight network for monaural speech enhancement
论文地址:THLNet: 用于单耳语音增强的两级异构轻量级网络 代码:https://github.com/dangf15/THLNet 引用格式:Dang F, Hu Q, Zhang P. THLNet: two-stage heterog ......
DFNet
speech
enhancement
IEEE
语音
Deep Linear Networks with Arbitrary Loss: All Local Minima Are Global
目录 问题 假设和重要结果 证明 注 Laurent T, Von Brecht J H. Deep linear networks with arbitrary loss: All local minima are global[C]. international c ......
hat
Deep
Networks
Neural
ldots
奇异值分解SVD
在介绍奇异值分解(SVD)之前我们先来回顾一下关于矩阵的一些基础知识。 矩阵基础知识 方阵 给定一个$ n×m $的矩阵$ A $,若n和m相等也就是矩阵的行和列相等那矩阵$ ......
矩阵
SVD
分解
奇异
times
V2AS = Way To Ask
V2AS 一个技术分享与创造的静土
手机扫一扫
移动阅读更方便
近15日热搜文章
Linux下VCS2014和Verdi2015的联合使用
Docker 创建 Bamboo6.7.1 以及与 Crowd3.3.2 实现 SSO 单点登录
Arduino 看门狗使用
4
Centos 7禁止ftdi_sio模块
5
再来一个tensorflow的测试性能的代码
6
查看显卡报错:NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.
7
一次 RocketMQ 进程自动退出排查经验分享(实战篇)
8
Angular使用总结 --- 模型驱动表单
9
解决编译twrp3.0.3遇到的问题
10
Qt Charts 动态实时绘制各种曲线图