首先,必须提前安装cmake、numpy、dlib,其中,由于博主所用的python版本是3.6.4(为了防止不兼容,所以用之前的版本),只能安装19.7.0及之前版本的dlib,所以直接pip install dlib会报错,需要pip install dlib==19.7.0
安装完预备库之后就可以直接pip install face_recognition
import face_recognition
from PIL import Image
image = face_recognition.load_image_file("1.jpg")
face_locations = face_recognition.face_locations(image) # top, right, bottom, left
#以下展示提取的人脸
for face_location in face_locations:
# Print the location of each face in this image
top, right, bottom, left = face_location
# You can access the actual face itself like this:
face_image = image[top:bottom, left:right]
pil_image = Image.fromarray(face_image)
pil_image.show()
import face_recognition
from PIL import Image,ImageDraw
image = face_recognition.load_image_file("1.jpg")
face_landmarks_list = face_recognition.face_landmarks(image)
#以下为展示轮廓线
pil_image = Image.fromarray(image)
d = ImageDraw.Draw(pil_image)
for face_landmarks in face_landmarks_list:
facial_features = [
'chin',
'left_eyebrow',
'right_eyebrow',
'nose_bridge',
'nose_tip',
'left_eye',
'right_eye',
'top_lip',
'bottom_lip'
]
for facial_feature in facial_features:
d.line(face_landmarks[facial_feature], width=5)
del d
pil_image.show()
import face_recognition
known_image = face_recognition.load_image_file("known_person.jpg")
unknown_image = face_recognition.load_image_file("unknown.jpg")
biden_encoding = face_recognition.face_encodings(known_image)[0]
unknown_encoding = face_recognition.face_encodings(unknown_image)[0]
results = face_recognition.compare_faces([biden_encoding], unknown_encoding)
①使用pillow库
#使用pillow库
import face_recognition
from PIL import Image, ImageDraw
# Load a second sample picture and learn how to recognize it.
first_image = face_recognition.load_image_file("3.jpg")
first_face_encoding = face_recognition.face_encodings(first_image)[0]
second_image = face_recognition.load_image_file("5.jpg")
second_face_encoding = face_recognition.face_encodings(second_image)[0]
# Create arrays of known face encodings and their names
known_face_encodings = [
first_face_encoding,
second_face_encoding
]
known_face_names = [
"first",
"second"
]
# Load an image with an unknown face
unknown_image = face_recognition.load_image_file("1.jpg")
# Find all the faces and face encodings in the unknown image
unknown_face_locations = face_recognition.face_locations(unknown_image)
unknown_face_encodings = face_recognition.face_encodings(unknown_image, unknown_face_locations)
pil_image = Image.fromarray(unknown_image)
# Create a Pillow ImageDraw Draw instance to draw with
draw = ImageDraw.Draw(pil_image)
# Loop through each face found in the unknown image
for (top, right, bottom, left), unknown_face_encoding in zip(unknown_face_locations, unknown_face_encodings):
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, unknown_face_encoding, tolerance=0.5)
name = "Unknown"
# If a match was found in known_face_encodings, just use the first one.
if True in matches:
first_match_index = matches.index(True)
name = known_face_names[first_match_index]
# Draw a box around the face using the Pillow module
draw.rectangle(((left, top), (right, bottom)), outline=(0, 0, 255))
# Draw a label with a name below the face
text_width, text_height = draw.textsize(name)
draw.rectangle(((left, bottom-text_height-10), (right, bottom)), fill=(0, 0, 255), outline=(0, 0, 255))
draw.text((left+6, bottom-text_height-3), name, fill=(255, 255, 255, 255))
# Remove the drawing library from memory as per the Pillow docs
del draw
# Display the resulting image
pil_image.show()
②使用opencv库
#使用opencv库
import face_recognition
import cv2
# 人物名称的集合
known_face_names = ["first","second"]
face_locations = []
face_encodings = []
demo_names = []
process_this_demo = True
# 本地图像一
first_image = face_recognition.load_image_file("1.jpg")
first_encoding = face_recognition.face_encodings(first_image)[0]
# 本地图像二
second_image = face_recognition.load_image_file("5.jpg")
second_encoding = face_recognition.face_encodings(second_image)[0]
known_face_encodings = [first_encoding,second_encoding]
# demo
path = "7.jpg"
demo = cv2.imread(path)
demo_image = face_recognition.load_image_file(path)
demo_encodings = face_recognition.face_encodings(demo_image)
rgb_demo = demo[:, :, ::-1]
demo_face_locations = face_recognition.face_locations(rgb_demo)
for demo_encoding in demo_encodings:
# 默认为unknown
matches = face_recognition.compare_faces(known_face_encodings, demo_encoding,tolerance=0.5)
name = "unknown"
if True in matches:
first_match_index = matches.index(True)
name = known_face_names[first_match_index]
demo_names.append(name)
# 将捕捉到的人脸显示出来
for (top, right, bottom, left), name in zip(demo_face_locations, demo_names):
# Scale back up face locations since the demo we detected in was scaled to 1/4 size
# 矩形框
cv2.rectangle(demo, (left, top), (right, bottom), (0, 0, 255), thickness=1)
#加上标签
cv2.rectangle(demo, (left, bottom-15), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(demo, name, (left+5,bottom-3), font, 0.5, (255, 255, 255), 1 )
# Display
cv2.imshow("CJK's practice", demo)
cv2.waitKey(0)
cv2.destroyAllWindows()
import face_recognition
import cv2,time
video_capture = cv2.VideoCapture(0)
# 本地图像一
first_image = face_recognition.load_image_file("1.jpg")
first_face_encoding = face_recognition.face_encodings(first_image)[0]
# 本地图像二
second_image = face_recognition.load_image_file("3.jpg")
second_face_encoding = face_recognition.face_encodings(second_image)[0]
# 本地图片三
third_image = face_recognition.load_image_file("5.jpg")
third_face_encoding = face_recognition.face_encodings(third_image)[0]
# Create arrays of known face encodings and their names
# 脸部特征数据的集合
known_face_encodings = [
first_face_encoding,
second_face_encoding,
third_face_encoding
]
# 人物名称的集合
known_face_names = [
"first",
"second",
"third"
]
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
# 读取摄像头画面
ret, frame = video_capture.read()
# 改变摄像头图像的大小,图像小,所做的计算就少
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# opencv的图像是BGR格式的,而我们需要是的RGB格式的,因此需要进行一个转换。
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# 根据encoding来判断是不是同一个人,是就输出true,不是为flase
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# 默认为unknown
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
if True in matches:
first_match_index = matches.index(True)
name = known_face_names[first_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
# 将捕捉到的人脸显示出来
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# 矩形框
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
#加上标签
cv2.rectangle(frame, (left, bottom-15), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left+5, bottom-3), font, 1.0, (255, 255, 255), 1)
# Display
cv2.imshow('monitor', frame)
# 按Q退出
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()
手机扫一扫
移动阅读更方便
你可能感兴趣的文章