【编程语言】Matlab 学习记录
阅读原文时间:2023年07月08日阅读:4

title: Matlab Learning Record

date: 2020-05-23 20:11:26

author: liudongdong1

img: https://gitee.com/github-25970295/blogImage/raw/master/img/voice-recognition-speech-detect-deep-260nw-694633963.webp

reprintPolicy: cc_by

cover: false

categories: 语言框架

tags:

  • Matlab

MATLAB是一种语法简单用途广泛的编程语言,既可以用于编写脚本,函数,也可以用于面向对象的程序开发或开发GUI界面。MATLAB被广泛应用于数值计算,图像处理,机器学习等领域。

1. 变量与矩阵

MATLAB变量声明是不需要指出变量的类型

clear; %清空内存
clc; %清空命令行
r1=1; %为一个变量赋值
z1=1+sqrt(3)*i; %赋值一个复数 sqrt()开方运算
z_real=real(z1); %复数的实部
z_img=imag(z1); %复数的虚部
z_abs=abs(z1); %复数的模
z_ang=angle(z1); %复数的幅角
z2=z1^2; %平方运算

MATLAB数组索引从1开始,这点需要牢记

arr1=rand(1,5); %arr1=[0.1418,0.4217,0.9157,0.7922,0.9594]
arr2=zeros(1,5); %arr2=[0,0,0,0,0]
arr3=ones(1,5); %arr3=[1,1,1,1,1]
arr4=linspace(1,2,5); %arr4=[1,1.25,1.5,1.75,2]
arr4=linspace(2,2,5); %arr4=[2,2,2,2,2]
mat1=rand(3,3); %随机生成3*3矩阵
mat2=[1,2,3;4,5,6;7,8,9];

获取一维数组的长度用length函数;获取多维函数的维数大小用size;

n = ndims(A)  # 获取数组维度
numberOfElements = length(array) #即一维数组的长度或者多维数组中最大的维数行数或列数中的较大值
[m,n] = size(X)    #获得矩阵的各个维数的大小
a=[1,2,3,4,5]   #用逗号或空格间隔
a=[1 2 3 4 5]
x=初始值 :[步长]:终值
x=linspace(初始值 ,终值,个数n)
x=logspace(初始值 ,终值,个数n)#生成[10初值,10终值]之间等分的n个数 如果步长省略,默认步长为50
M = max(A)
C = max(A,B)
for i=1:1:r
    plot([time(w(i,1)),timev2(w(i,2))],[phaseznormal(w(i,1)),phasev2(w(i,2))],'--','Color',[0.5 0.5 0.5], 'LineWidth',0.5);
    hold on
end

2. 分支与循环

MATLAB常用的分支语句有__if-else__和__switch-case__

limit = 0.75;
A = rand(10,1)
if any(A > limit)
    disp('There is at least one value above the limit.')
else
    disp('All values are below the limit.')
end

MATLAB常用的循环有__while__循环和__for__循环

for v = 1.0:-0.2:0.0
   disp(v)
end

for v = [1 5 8 17]
   disp(v)
end

3. 函数及函数句柄

这里分别使用函数函数句柄的方法来生成__Fibonacci__数列。

需要注意函数名和文件名要保持一致,以下先使用函数的方式:

function y = fibonacci (x)
if x == 1 || x==2
    y = 1;
    return % return可以不写
else
    y = fibonacci(x-1) + fibonacci(x-2);
    return
end

以下是使用函数句柄的方式:

fibo=@(n) (((1+sqrt(5))/2)^n-((1-sqrt(5))/2)^n)/sqrt(5);
fn=zeros(1,100);
for i=1:1:100
    fn(i)=fibo(i);
end

4. 数值微积分

使用dx=0.000001为步长的向前差分求sin(x)的导数

\[f^,(x)=\frac{f(x+dx)-f(x)}{dx}
\]

figure ('name','diff demo1');
x=linspace(0,10,100);
y=sin(x);
dx=0.000001;dydx=[];
for i=1:100
    dydx(i)=(sin(x(i)+dx)-y(i))/dx;
end
plot(x,y,'r',x,dydx,'b');
legend('sin(x)','cos(x)');
title('diff demo');
xlabel('x');ylabel('y')

使用MATLAB的差分工具diff计算导数

h = 0.001;       % step size
X = -pi:h:pi;    % domain
f = sin(X);      % range
Y = diff(f)/h;   % first derivative
Z = diff(Y)/h;   % second derivative
plot(X(:,1:length(Y)),Y,'r',X,f,'b', X(:,1:length(Z)),Z,'k')

使用矩形法计算\(\int_0^1x^2dx\):

\[\int_a^bf(x)dx=\frac{b-a}{n}\sum_{i=1}^nf(x_i)
\]

n=100000;a=0;b=1; %取步长为100000
x=a:1/n:b;
dx=(b-a)/n;x=x+dx/2;
s=x.^2; %采样
int=dx*sum(s);

调用MATLAB中的quad函数使用__Simpson__法计算数值积分

func=@(x)x.^2;
int=quad(func,0,1)

5. 常微分方程(组)的数值解

使用__Euler__法计算常微分方程(误差较大,不推荐):

\[\frac{dy}{dx}=x^2+y^2+3x-2y
\]

\[y|_{x=0}=1
\]

取时间步长为h,则

\[y(x_{n+1})=y(x_n)+f(y(x_n),x_n)*h
\]

function matlab_demo
    func=@(x,y)x.^2+y.^2+3*x-2*y
    [x,y]=euler(func,[0,1],1,0.01)
    plot(x,y)
return

function [x,y]=euler(fun,xspan,y0,h)
    x=xspan(1):h:xspan(2)
    y(1)=y0;
    for n=1:length(x)-1
        y(n+1)=y(n)+h*feval(fun,x(n),y(n))
    end
return

使用45阶__Runge-Kutta__算法ode45计算常微分方程组:

\[\frac{dx}{dt}=2x-3y
\]

\[\frac{dy}{dt}=x+2y
\]

\[x|_{t=0}=1
\]

\[y|_{t=0}=1
\]

function ode_demo
y0=[1,1];
tspan=0:0.01:5;
option = odeset('AbsTol',1e-4);
[t,x]=ode45(@dfunc,tspan,y0,option);
figure('name','ode45 demo');
plot(t,x(:,1),'r',t,x(:,2),'b');
return

function dx=dfunc(t,x)
dx=zeros(2,1);
dx(1)=2*x(1)-3*x(2); % x(1)=x
dx(2)=x(1)+2*x(2); % x(2)=y
return

6. 偏微分方程(组)的数值解

使用pdepe进行微分方程(组)的求解,需要先将微分方程(组),以及边界和初值条件化为如下形式:

\[c(x,t,\frac{\partial{u}}{\partial{x}})\frac{\partial{u}}{\partial{t}}=x^{-m}\frac{\partial}{\partial{t}}[x^mf(x,t,u,\frac{\partial{u}}{\partial{x}})]+s(x,t,u,\frac{\partial{u}}{\partial{x}})
\]

\[p(x,t,u)+q(x,t,u)*f(x,t,u,\frac{\partial{u}}{\partial{x}})=0
\]

\[u(x,t_0)=u_0
\]

举一个例子:

\[\frac{\partial{u}}{\partial{t}}=\frac{\partial^2{u}}{\partial{x^2}}-u
\]

\[u|_{x=0}=1
\]

\[u|_{x=1}=0
\]

\[u|_{t=0}=(x-1)^2
\]

求解过程如下:

function pde_demo
    x=0:0.05:1;
    t=0:0.05:1;
    m=0;
    sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t);
    figure('name','pde demo');
    surf(x,t,sol(:,:,1));
    title('pde demo');
    xlabel('x');ylabel('t');zlabel('u');
return

function [c,f,s]=pdefun(x,t,u,du) %方程描述函数
    c=1;
    f=1*du;
    s=-1*u;
return

function [pa,qa,pb,qb]=pdebc(xa,ua,xb,ub,t) %边界描述函数
    pa=ua-1;
    qa=0;
    pb=ub;
    qb=0;
return

function u0=pdeic(x) %初值描述函数
    u0=(x-1)^2;
return

7. 文件读取

#通过python 文件进行存储为txt格式,然后通过matlab代码直接读取
np.savetxt("xy1.txt", yvals,fmt='%d',delimiter=',')


clear ;close all; clc
data=load('./kinect/314637_Guesture_segment.txt')
x_dtw=data(:,1)
y_dtw=data(:,2)
z_dtw=data(:,3)
time=data(:,4)
%转置操作  data=data.’
phase=4*pi*(x_dtw.^2+y_dtw.^2+z_dtw.^2)/0.33
phaseznormal=zscore(phase)
save kinect.txt -ascii phaseznormal

8. 快捷键

4.1. 注释

Ctrl+r:选中要注释的多行文本,然后按Ctrl+r就可以实现多行注释。

Ctrl+t:选中已经注释了的多行文本,然后按Ctrl+t就可以取消多行注释。

Resource

手机扫一扫

移动阅读更方便

阿里云服务器
腾讯云服务器
七牛云服务器