作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/
题目地址:https://leetcode.com/problems/longest-palindromic-subsequence/description/
Given a string s, find the longest palindromic subsequence’s length in s. You may assume that the maximum length of s is 1000.
Example 1:
Input:
"bbbab"
Output:
4
One possible longest palindromic subsequence is "bbbb".
Example 2:
Input:
"cbbd"
Output:
2
One possible longest palindromic subsequence is "bb".
找出一个字符串中最长的回文序列的长度。注意序列可以是不连续的,而子字符串是连续的。
做完昨天的每日一题 446. 等差数列划分 II - 子序列 之后,相信大家对于子序列问题的套路已经更加了解了。子序列问题不能用滑动窗口了,可以用动态规划来解决。子序列问题的经典题目就是 300. 最长递增子序列,务必掌握。
先从整体思路说起。
子序列问题,由于是数组中的非连续的一个序列,使用动态规划求解时,避免不了二重循环:第一重循环是求解动态规划的每一个状态
d
p
[
i
]
,
(
0
<
=
i
<
=
N
)
dp[i], (0 <= i <= N)
dp[i],(0<=i<=N) ,第二重循环是向前寻找上一个子序列的结尾
j
,
(
0
<
=
j
<
i
)
j ,(0 <= j < i)
j,(0<=j<i)$ 来和
i
i
i 一起构成满足题意的新的子序列。
对于「最长递增子序列」问题,我们对
i
,
j
i, j
i,j 的要求是
n
u
m
s
[
i
]
>
n
u
m
s
[
j
]
nums[i] > nums[j]
nums[i]>nums[j],即递增;
对于「能构成等差数列的子序列」问题,我们对
i
,
j
i, j
i,j 的要求是
n
u
m
[
i
]
num[i]
num[i] 可以在
n
u
m
s
[
j
]
nums[j]
nums[j] 的基础上构成等差数列。
对于「最长回文子序列」问题,我们对
i
,
j
i, j
i,j 本身的取值没有要求,但是希望能够成最长的回文子串。
在动态规划问题中,我们找到一个符合条件的
j
j
j ,然后就可以通过状态转移方程由
d
p
[
j
]
dp[j]
dp[j] 推导出
d
p
[
i
]
dp[i]
dp[i] 。
然后,我理一下本题的解法。
当已知一个序列是回文时,在其首尾添加元素后的序列存在两种情况:
状态定义:
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j] 表示
s
[
i
…
j
]
s[i…j]
s[i…j] 中的最长回文序列长度。
状态转移方程:
i
>
j
i > j
i>j,
d
p
[
i
]
[
j
]
=
0
dp[i][j] = 0
dp[i][j]=0;
i
=
=
j
i == j
i==j,
d
p
[
i
]
[
j
]
=
1
dp[i][j] = 1
dp[i][j]=1;
i
<
j
i < j
i<j 且
s
[
i
]
=
=
s
[
j
]
s[i] == s[j]
s[i]==s[j],
d
p
[
i
]
[
j
]
=
d
p
[
i
+
1
]
[
j
−
1
]
+
2
dp[i][j] = dp[i + 1][j - 1] + 2
dp[i][j]=dp[i+1][j−1]+2;
i
<
j
i < j
i<j 且
s
[
i
]
!
=
s
[
j
]
s[i]!= s[j]
s[i]!=s[j],
d
p
[
i
]
[
j
]
=
m
a
x
(
d
p
[
i
+
1
]
[
j
]
,
d
p
[
i
]
[
j
−
1
]
)
dp[i][j] = max(dp[i + 1][j],dp[i][j - 1])
dp[i][j]=max(dp[i+1][j],dp[i][j−1]);
遍历顺序:
从状态转移方程可以看出,计算
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j] 时需要用到
d
p
[
i
+
1
]
[
j
−
1
]
dp[i+1][j - 1]
dp[i+1][j−1] 和
d
p
[
i
+
1
]
[
j
]
dp[i + 1][j]
dp[i+1][j],所以对于
i
i
i 的遍历应该从后向前;对于
j
j
j 的遍历应该从前向后。
返回结果:
最后返回
d
p
[
0
]
[
s
.
l
e
n
g
t
h
(
)
−
1
]
dp[0][s.length() - 1]
dp[0][s.length()−1]。
提供了三种语言的代码。
java 代码
class Solution {
public int longestPalindromeSubseq(String s) {
int size = s.length();
int[][] dp = new int[size][size];
for(int i = size - 1; i >= 0; i--){
dp[i][i] = 1;
for(int j = i + 1; j < size; j++){
if(s.charAt(i) == s.charAt(j)){
dp[i][j] = dp[i + 1][j - 1] + 2;
}else{
dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][size - 1];
}
}
C++代码:
class Solution {
public:
int longestPalindromeSubseq(string s) {
int size = s.size();
vector<vector<int>> dp(size, vector<int>(size, 0));
for(int i = size - 1; i >= 0; i--){
dp[i][i] = 1;
for(int j = i + 1; j < size; j++){
if(s[i] == s[j]){
dp[i][j] = dp[i + 1][j - 1] + 2;
}else{
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][size - 1];
}
};
python 代码:
class Solution:
def longestPalindromeSubseq(self, s):
n = len(s)
dp = [[0] * n for _ in range(n)]
for i in range(n - 1, -1, -1):
dp[i][i] = 1
for j in range(i + 1, n):
if s[i] == s[j]:
dp[i][j] = dp[i + 1][j - 1] + 2
else:
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])
return dp[0][n - 1]
时间复杂度:
O
(
N
2
)
O(N^2)
O(N2)
空间复杂度:
O
(
N
2
)
O(N^2)
O(N2)
子序列的动态规划解法:两重循环。其实就看对于每个
i
i
i,当找到满足题目要求的
j
j
j 的时候,状态转移方程怎么变化。
参考:http://blog.csdn.net/camellhf/article/details/70337501
2018 年 3 月 15 日 --雾霾消散,春光明媚
2021 年 8 月 12 日——对面在装修,很吵
手机扫一扫
移动阅读更方便
你可能感兴趣的文章