️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问。
学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度也更复杂。在这个专栏里,小彭与你分享每场 LeetCode 周赛的解题报告,一起体会上分之旅。
本文是 LeetCode 上分之旅系列的第 44 篇文章,往期回顾请移步到文章末尾~
T1. 统计对称整数的数目(Easy)
T2. 生成特殊数字的最少操作(Medium)
T3. 统计趣味子数组的数目(Medium)
T4. 边权重均等查询(Hard)
https://leetcode.cn/problems/count-symmetric-integers/
根据题意模拟,亦可以使用前缀和预处理优化。
class Solution {
fun countSymmetricIntegers(low: Int, high: Int): Int {
var ret = 0
for (x in low..high) {
val s = "$x"
val n = s.length
if (n % 2 != 0) continue
var diff = 0
for (i in 0 until n / 2) {
diff += s[i] - '0'
diff -= s[n - 1 - i] - '0'
}
if (diff == 0) ret += 1
}
return ret
}
}
复杂度分析:
https://leetcode.cn/problems/minimum-operations-to-make-a-special-number/
思维题,这道卡了多少人。
可以用回溯解决:
class Solution {
fun minimumOperations(num: String): Int {
val memo = HashMap<String, Int>()
fun count(x: String): Int {
val n = x.length
if (n == 1) return if (x == "0") 0 else 1
if (((x[n - 2] - '0') * 10 + (x[n - 1]- '0')) % 25 == 0) return 0
if(memo.containsKey(x))return memo[x]!!
val builder1 = StringBuilder(x)
builder1.deleteCharAt(n - 1)
val builder2 = StringBuilder(x)
builder2.deleteCharAt(n - 2)
val ret = 1 + min(count(builder1.toString()), count(builder2.toString()))
memo[x]=ret
return ret
}
return count(num)
}
}
复杂度分析:
初步分析:
具体实现:
双指针: 我们找到满足条件的最靠左的下标 i,并删除末尾除了目标数字外的整段元素,即 $ret = n - i - 2$;
特殊情况: 在 4 种构造合法的特殊数字外,还存在删除所有非 0 数字后构造出 0 的方案;
是否要验证数据含有前导零: 对于构造「00」的情况,是否会存在删到最后剩下多个 0 的情况呢?其实是不存在的。因为题目说明输入数据 num 本身是不包含前导零的,如果最后剩下多个 0 ,那么在最左边的 0 左侧一定存在非 0 数字,否则与题目说明矛盾。
class Solution {
fun minimumOperations(num: String): Int {
val n = num.length
var ret = n
for (choice in arrayOf("00", "25", "50", "75")) {
// 双指针
var j = 1
for (i in n - 1 downTo 0) {
if (choice[j] != num[i]) continue
if (--j == -1) {
ret = min(ret, n - i - 2)
break
}
}
}
// 特殊情况
ret = min(ret, n - num.count { it == '0'})
return ret
}
}
复杂度分析:
https://leetcode.cn/problems/count-of-interesting-subarrays/
初步分析:
分析到这里,容易想到用前缀和实现:
组合以上技巧:
class Solution {
fun countInterestingSubarrays(nums: List<Int>, m: Int, k: Int): Long {
val n = nums.size
var ret = 0L
val preSum = HashMap<Int, Int>()
preSum[0] = 1 // 注意空数组的状态
var cur = 0
for (i in 0 until n) {
if (nums[i] % m == k) cur ++ // 更新前缀和
val key = cur % m
val target = (key - k + m) % m
ret += preSum.getOrDefault(target, 0) // 记录方案
preSum[key] = preSum.getOrDefault(key, 0) + 1 // 记录前缀和
}
return ret
}
}
复杂度分析:
相似题目:
https://leetcode.cn/problems/minimum-edge-weight-equilibrium-queries-in-a-tree/
初步分析:
思考实现:
现在的关键问题是,如何快速地找到 $
对于单次 LCA 操作来说,我们可以走 DFS 实现 $O(n)$ 时间复杂度的算法,而对于多次 LCA 操作可以使用 倍增算法 预处理以空间换时间,单次 LCA 操作的时间复杂度进位 $O(lgn)$。
在 LeetCode 有倍增的模板题 1483. 树节点的第 K 个祖先。
在求 LCA 时,我们先把 $
class Solution {
fun minOperationsQueries(n: Int, edges: Array<IntArray>, queries: Array<IntArray>): IntArray {
val U = 26
// 建图
val graph = Array(n) { LinkedList<IntArray>() }
for (edge in edges) {
graph[edge[0]].add(intArrayOf(edge[1], edge[2] - 1))
graph[edge[1]].add(intArrayOf(edge[0], edge[2] - 1))
}
// 预处理深度、倍增祖先节点、倍增路径信息
val m = 32 - Integer.numberOfLeadingZeros(n - 1)
val depth = IntArray(n)
val parent = Array(n) { IntArray(m) { -1 }} // parent[i][j] 表示 i 的第 2^j 个父节点
val cnt = Array(n) { Array(m) { IntArray(U) }} // cnt[i][j] 表示 <i - 2^j> 个父节点的路径信息
fun dfs(i: Int, par: Int) {
for ((to, w) in graph[i]) {
if (to == par) continue // 避免回环
depth[to] = depth[i] + 1
parent[to][0] = i
cnt[to][0][w] = 1
dfs(to, i)
}
}
dfs(0, -1) // 选择 0 作为根节点
// 预处理倍增
for (j in 1 until m) {
for (i in 0 until n) {
val from = parent[i][j - 1]
if (-1 != from) {
parent[i][j] = parent[from][j - 1]
cnt[i][j] = cnt[i][j - 1].zip(cnt[from][j - 1]) { e1, e2 -> e1 + e2 }.toIntArray()
}
}
}
// 查询
val q = queries.size
val ret = IntArray(q)
for ((i, query) in queries.withIndex()) {
var (x, y) = query
// 特判
if (x == y || parent[x][0] == y || parent[y][0] == x) {
ret[i] = 0
}
val w = IntArray(U) // 记录路径信息
var path = depth[x] + depth[y] // 记录路径长度
// 先跳到相同高度
if (depth[y] > depth[x]) {
val temp = x
x = y
y = temp
}
var k = depth[x] - depth[y]
while (k > 0) {
val j = Integer.numberOfTrailingZeros(k) // 二进制分解
w.indices.forEach { w[it] += cnt[x][j][it] } // 记录路径信息
x = parent[x][j] // 向上跳 2^j 个父节点
k = k and (k - 1)
}
// 再使用倍增找 LCA
if (x != y) {
for (j in m - 1 downTo 0) { // 最多跳 m - 1 次
if (parent[x][j] == parent[y][j]) continue // 跳上去相同就不跳
w.indices.forEach { w[it] += cnt[x][j][it] } // 记录路径信息
w.indices.forEach { w[it] += cnt[y][j][it] } // 记录路径信息
x = parent[x][j]
y = parent[y][j] // 向上跳 2^j 个父节点
}
// 最后再跳一次就是 lca
w.indices.forEach { w[it] += cnt[x][0][it] } // 记录路径信息
w.indices.forEach { w[it] += cnt[y][0][it] } // 记录路径信息
x = parent[x][0]
}
// 减去重链长度
ret[i] = path - 2 * depth[x] - w.max()
}
return ret
}
}
复杂度分析:
推荐阅读
LeetCode 上分之旅系列往期回顾:
️ 永远相信美好的事情即将发生,欢迎加入小彭的 Android 交流社群~
手机扫一扫
移动阅读更方便
你可能感兴趣的文章