B-tree,B即Balanced
,是自平衡的多叉搜索树,用于组织和存储大量数据,以及数据库和文件系统等需要高效查找和插入操作的应用中。
为什么是“大量数据”?当主存不足以放入大量数据时,不常用的数据应存储于外存,而访问外存有额外时间开销(如磁盘转动时间、磁头移动时间等),于是我们需要一个数据结构来减少磁盘访问次数。
B树每个节点包含多个关键字(键)和对应的数据指针(节点),关键字按照大小排序,并且每个节点的关键字都对应子节点的范围。
B树的根节点存储在主存中,而其他节点存储在磁盘或其他外部存储设备上。
M阶B树是有以下特性的M叉树:
五阶B树示例如下图所示:
上图中,M=5,L=5,于是,根节点有2到5个子节点,非叶节点最多有4个关键字,除根节点外的非叶结点有3到5个子节点,叶节点有3到5个数据项。每个节点都是一个磁盘块(disk block)。
如图2,插入57到图1。
插入操作步骤如下:
如图3,插入55到图2,共两步:分裂页节点和更新父节点。所以一共有三次disk write操作。
如图4,插入40到图3,由于父节点满项,所以除了分裂子节点,更新父节点,还需要再分裂父节点。一共五次disk write。
添加操作可能导致的根节点分裂是B树高度增加唯一方式。
flowchart TD
A(寻找键值) ==> B{是否存在}
B ==是==> C[删除键值]
B ==否==> D(结束)
C ==> E{该节点是否符合最小占用}
E ==是==> D
E ==否==> F{邻居节点是否比最小占用多}
F ==是==> G[从邻居节点借一个]
F ==否==> H[合并邻居节点]
G ==> D
H ==> I{父节点是否符合最小占用}
I ==是==> D
I ==否==> J{是否为根节点}
J ==否==> F
J ==是==> K{根节点是否只有一个子节点}
K ==否==> D
K ==是==> L[删除根节点,子节点作为新根节点]
L ==> D
上图删除根节点是B树高度减小的唯一方式。
手机扫一扫
移动阅读更方便
你可能感兴趣的文章