LCA,即最近公共祖先,在图论中应用比较广泛。
LCA的定义如下:给定一个有根树,若节点$z$同时是节点$x$和节点$y$的祖先,则称$z$是$x,y$的公共祖先;在$x,y$的所有公共祖先当中深度最大的称为$x,y$的最近公共祖先。下面给出三个最近公共祖先的例子:
显然,从上面的例子可以得出,$LCA(x,y)$即为$x,y$到根节点的路径的交汇点,也是$x$到$y$的路径上深度最小的节点。
求LCA的方法通常有三种:
当然,求LCA还有其它方法,例如树剖等,请读者自行了解,本文主要讲解上面提到的三种方法。
向上标记法
向上标记法是求LCA最直接的方法,直接根据定义来求,单次查询的时间复杂度最坏为$O(n)$(看起来好像还挺快的,不过什么题会只有一次查询呢)
算法流程:
该方法思想是绝对简单的,实现也简单,因此在这里就不给出具体实现了。不过由于其时间复杂度过高,在实际中基本不会应用到,在这里提一下主要还是为讲解Tarjan算法做基础。
树上倍增法
树上倍增法应用非常广泛,读者可以深入地学习。用树上倍增法求LCA的时间复杂度为$O((n+m)logn)$。
树上倍增法用到了二进制拆分的思想。在求LCA时,用$f_{i,j}$存储$i$的第$2^j$辈祖先的节点编号,特别地,若该节点不存在,则将值定为0。根据这个定义,可以推出以下的递推式:
f[i][j]=f[f[i][j-1]][j-1];
这个递推式很好得出,请读者根据定义自己思考。
那么怎样对$f$数组进行递推呢?根据递推式可以发现,一个节点的$f$数组的值要通过它的祖先节点转移过来,因此我们在递推时要采用从根到叶子的遍历。普遍使用的方法有dfs和bfs,在这里我们用bfs来实现。
由于接下来的步骤还需要关系到节点的深度,因此我们定义一个数组$d_i$存储$i$节点的深度,在递推$f$数组的同时递推出来。$d$数组的递推式更简单了,就不多说了吧。
步骤:
以上部分是树上倍增法的预处理,也是比较通用的对于树上倍增的预处理,时间复杂度$O(nlogn)$。接下来是求LCA的核心部分。
步骤:
树上倍增法代码:
#include
#include
#include
#include
using namespace std;
const int N=6e5;
int n,m,s,t,tot=0,f[N][20],d[N],ver[2*N],Next[2*N],head[N];
queue
void add(int x,int y)
{
ver[++tot]=y,Next[tot]=head[x],head[x]=tot;
}//邻接表存边操作。由于只求LCA时不关心边权,因此可以不存边权
void bfs()
{
q.push(s);
d[s]=1;//将根节点入队并标记
while(q.size())
{
int x=q.front();q.pop();//取出队头
for(int i=head[x];i;i=Next[i])
{
int y=ver[i];
if(d[y])
continue;
d[y]=d[x]+1;
f[y][0]=x;//初始化,因为y的父亲节点就是x
for(int j=1;j<=t;j++)
f[y][j]=f[f[y][j-1]][j-1];//递推f数组
q.push(y);
}
}
}
int lca(int x,int y)
{
if(d[x]>d[y])
swap(x,y);
for(int i=t;i>=0;i--)
if(d[f[y][i]]>=d[x])
y=f[y][i];//尝试上移y
if(x==y)
return x;//若相同说明找到了LCA
for(int i=t;i>=0;i--)
if(f[x][i]!=f[y][i])
{
x=f[x][i],y=f[y][i];
}//尝试上移x、y并保持它们不相遇
return f[x][0];//当前节点的父节点即为LCA
}
int main()
{
cin>>n>>m>>s;
t=log2(n)+1;
for(int i=1;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
add(x,y),add(y,x);
}
bfs();
while(m--)
{
int a,b;
scanf("%d%d",&a,&b);
printf("%d\n",lca(a,b));
}
return 0;
}
对于树上倍增法还有一些应用,这里给出一道比较不错的树上倍增法的应用题:
读者可以先尝试解题,实在解不出来再借鉴题解的思路。
Tarjan算法
Tarjan牛逼!
Tarjan算法求LCA的本质是用并查集对向上标记法进行优化,是一种离线算法,时间复杂度$O(n+m)$。
对于并查集的基本操作,不了解的可以点击食用。
求LCA的Tarjan算法主体由dfs实现,并用并查集进行优化。对于每个节点,我们增加一个标记:
显然,对于当前访问的节点$x$,它到根节点的路径一定都被标记为1。因此对于任意一个与$x$相关的询问,设询问的另一个节点为$y$,则$LCA(x,y)$即为$y$到根节点的路径中第一个,也就是最深的标记为1的节点。
求这个节点的方法可以用并查集优化。当一个节点的标记改为2的同时,将它合并到其父节点的集合当中。显然,此时它的父节点的标记一定为1,并且单独构成一个集合,因为这个父节点还没有进行过回溯操作。
在合并过后,遍历关于当前节点$x$的所有询问,对于任意一个询问,若$y$的标记为2,说明其已经被访问过,并且它的并查集指向的那个节点,也就是$y$到根节点的路径中最深的还没有回溯的节点,一定就是$LCA(x,y)$。
对于询问,我们可以用一个不定长数组存储与每个节点相关的询问,并且每个询问用一个二元组表示,第一维存储该询问的另一个节点,第二维存储该询问输入的次序,以便按顺序输出
这样,Tarjan算法求LCA的步骤就很明了了:
思路清晰之后,实现起来不会很难
Tarjan算法代码:
#include
#include
#include
#include
using namespace std;
const int N=6e5;
int n,m,s,tot=0,fa[N],v[N],ans[N],ver[2*N],Next[2*N],head[N];
vector< pair
void add(int x,int y)
{
ver[++tot]=y,Next[tot]=head[x],head[x]=tot;
}//邻接表插入操作
int get(int a)
{
return fa[a]==a?a:fa[a]=get(fa[a]);
}//并查集查找操作
void add_query(int x,int y,int id)
{
query[x].push_back(make_pair(y,id));
query[y].push_back(make_pair(x,id));
}//添加询问
void tarjan(int x)
{
v[x]=1;
for(int i=head[x];i;i=Next[i])
{
int y=ver[i];
if(v[y])
continue;//若访问过则不再访问
tarjan(y);
fa[y]=x;//将子节点合并到自己的集合中
}//遍历所有出边
for(int i=0;i
for(int i=1;i<=n;i++)
fa[i]=i;
for(int i=1;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
add(x,y),add(y,x);
}
for(int i=1;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
if(a==b)
ans[i]=0;//特判,若两个节点相等直接输出
else
add_query(a,b,i);
}
tarjan(s);
for(int i=1;i<=m;i++)
printf("%d\n",ans[i]);
return 0;
}
习题:
声明:本文部分内容参考lyd的蓝书。
2019.5.14 于厦门外国语学校石狮分校
手机扫一扫
移动阅读更方便
你可能感兴趣的文章