上一篇讲了类的序列化,今天要讲类的反序列化,ObjectInputStream。
从内部变量中我们可以看出,内部包含一个块输入流,因为有handle机制所以也有一个内部缓存表但不是hash表
/** 处理数据块转换的过滤流 */
private final BlockDataInputStream bin;
/** 确认调用返回列表 */
private final ValidationList vlist;
/** 递归深度 */
private long depth;
/** 对任何种类的对象、类、枚举、代理的引用总数 */
private long totalObjectRefs;
/** 流是否关闭 */
private boolean closed;
/** 线柄->obj/exception映射 */
private final HandleTable handles;
/** 传递句柄值上下调用栈的草稿区 */
private int passHandle = NULL_HANDLE;
/** 当在字段值末尾因没有TC_ENDBLOCKDATA阻塞时设置的标志 */
private boolean defaultDataEnd = false;
/** b读取原始字段值的缓冲区 */
private byte[] primVals;
/** 如果为true,调用readObjectOverride()来替代readObject() */
private final boolean enableOverride;
/** if true, invoke resolveObject()如果为true调用resolveObject() */
private boolean enableResolve;
/**
* 向上调用类定义的readObject方法期间的上下文,保持当前在被反序列化的对象和当前类的描述符。非readObject向上调用期间为null。
*/
private SerialCallbackContext curContext;
/**
* 类描述符过滤器和从流中读取的类,可能是null
*/
private ObjectInputFilter serialFilter;
从构造函数中可以看出,同样需要验证类的安全性,同时在初始化时会自动读取Java序列化头部信息。跟输出流一样,预留了一个生成全空的类输入流初始化方法,用于继承ObjectInputStream的子类进行重写。安全验证和输出流中是相同的,而读取头部信息需要读取魔数和版本号并验证与当前JDK中的是否一致。当然,如果两端使用的JDK中这个类版本号不一致就会出现异常。
/**
* 创建一个ObjectInputStream从指定的InputStream中读取。一个序列化流头部从这个流读取和验证。这个构造器会阻塞直到对应的ObjectOutputStream已经写并刷新了头部。
* 如果安装了安全管理器,这个构造器会在被重写了ObjectInputStream.readFields或ObjectInputStream.readUnshared的子类构造器
* 直接或间接调用的时候检查enableSubclassImplementation序列化许可
*
* @param in input stream to read from
* @throws StreamCorruptedException 如果流头部错误
* @throws IOException 在读取流头部是发生了IO错误
* @throws SecurityException 如果不被信任的子类非法重写了安全敏感方法
* @throws NullPointerException 如果in是null
*/
public ObjectInputStream(InputStream in) throws IOException {
verifySubclass();
bin = new BlockDataInputStream(in);
handles = new HandleTable(10);
vlist = new ValidationList();
serialFilter = ObjectInputFilter.Config.getSerialFilter();
enableOverride = false;
readStreamHeader();
bin.setBlockDataMode(true);
}
protected ObjectInputStream() throws IOException, SecurityException {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
sm.checkPermission(SUBCLASS_IMPLEMENTATION_PERMISSION);
}
bin = null;
handles = null;
vlist = null;
serialFilter = ObjectInputFilter.Config.getSerialFilter();
enableOverride = true;
}
protected void readStreamHeader()
throws IOException, StreamCorruptedException
{
short s0 = bin.readShort();
short s1 = bin.readShort();
if (s0 != STREAM_MAGIC || s1 != STREAM_VERSION) {
throw new StreamCorruptedException(
String.format("invalid stream header: %04X%04X", s0, s1));
}
}
下面直接切入正题,来看一下readObject,读和写一样也是final方法,所以子类要重写必须通过readObjectOverride方法来完成。如果类里面定义了非基本数据类型变量,需要进行嵌套读取,outerHandle用来存储上一层读取对象的句柄,然后调用readObject0读取生成对象。完成之后要记录句柄依赖,并检查有无异常产生。最上层读取完成之后要发起回调。
public final Object readObject()
throws IOException, ClassNotFoundException
{
if (enableOverride) {
return readObjectOverride();//因为是final方法,子类要重写只能通过这里
}
// 如果是嵌套读取,passHandle包含封闭对象的句柄
int outerHandle = passHandle;
try {
Object obj = readObject0(false);
handles.markDependency(outerHandle, passHandle);//记录句柄依赖
ClassNotFoundException ex = handles.lookupException(passHandle);
if (ex != null) {
throw ex;
}
if (depth == 0) {
vlist.doCallbacks();//最上层调用的读取完成后,发起回调
}
return obj;
} finally {
passHandle = outerHandle;
if (closed && depth == 0) {
clear();//最上层调用退出时清除调用返回列表和句柄缓存
}
}
}
readObject0必须在块输入流内为空也就是上一次反序列化完全结束后才能开始,否则会抛出异常。首先,从流中读取一个标志位,判断当前下一个内容是什么类型,上次我们讲到过,输出的时候都会先输出TC_OBJECT,所以在默认情况下也是先读取到TC_OBJECT,也就是先执行readOrdinaryObject
private Object readObject0(boolean unshared) throws IOException {
boolean oldMode = bin.getBlockDataMode();
if (oldMode) {//之前是块输入模式且有未消费的数据会抛出异常
int remain = bin.currentBlockRemaining();
if (remain > 0) {
throw new OptionalDataException(remain);
} else if (defaultDataEnd) {
/*
* 流当前在字段值通过默认序列化块写的末尾,因为没有终止TC_ENDBLOCKDATA标记,模拟通常数据结尾的行为
*/
throw new OptionalDataException(true);
}
bin.setBlockDataMode(false);
}
byte tc;
while ((tc = bin.peekByte()) == TC_RESET) {//读到流reset标志
bin.readByte();//消耗缓存的字节
handleReset();//depth为0时执行clear方法,否则抛出异常
}
depth++;//增加递归深度
totalObjectRefs++;//增加引用对象数
try {
switch (tc) {
case TC_NULL:
return readNull();
case TC_REFERENCE:
return readHandle(unshared);
case TC_CLASS:
return readClass(unshared);
case TC_CLASSDESC:
case TC_PROXYCLASSDESC:
return readClassDesc(unshared);
case TC_STRING:
case TC_LONGSTRING:
return checkResolve(readString(unshared));
case TC_ARRAY:
return checkResolve(readArray(unshared));
case TC_ENUM:
return checkResolve(readEnum(unshared));
case TC_OBJECT:
return checkResolve(readOrdinaryObject(unshared));//一般会先进入这里
case TC_EXCEPTION:
IOException ex = readFatalException();
throw new WriteAbortedException("writing aborted", ex);
case TC_BLOCKDATA:
case TC_BLOCKDATALONG:
if (oldMode) {
bin.setBlockDataMode(true);
bin.peek(); // force header read
throw new OptionalDataException(
bin.currentBlockRemaining());
} else {
throw new StreamCorruptedException(
"unexpected block data");
}
case TC_ENDBLOCKDATA:
if (oldMode) {
throw new OptionalDataException(true);
} else {
throw new StreamCorruptedException(
"unexpected end of block data");
}
default:
throw new StreamCorruptedException(
String.format("invalid type code: %02X", tc));
}
} finally {
depth--;
bin.setBlockDataMode(oldMode);
}
}
readOrdinaryObject是读取一个自定义类最上层直接调用的方法。几个关键的点,首先是要读取类的描述信息,然后根据类描述符创建一个实例,将对象实例存储到句柄缓存中并将句柄存储到passHandle,然后读取内部变量数据,最后检查有没有替换对象
private Object readOrdinaryObject(boolean unshared)
throws IOException
{
if (bin.readByte() != TC_OBJECT) {
throw new InternalError();
}
ObjectStreamClass desc = readClassDesc(false);//读取类描述信息
desc.checkDeserialize();
Class<?> cl = desc.forClass();
if (cl == String.class || cl == Class.class
|| cl == ObjectStreamClass.class) {
throw new InvalidClassException("invalid class descriptor");
}
Object obj;
try {
obj = desc.isInstantiable() ? desc.newInstance() : null;//根据类描述新建一个实例
} catch (Exception ex) {
throw (IOException) new InvalidClassException(
desc.forClass().getName(),
"unable to create instance").initCause(ex);
}
passHandle = handles.assign(unshared ? unsharedMarker : obj);//将对象存储到句柄缓存中
ClassNotFoundException resolveEx = desc.getResolveException();
if (resolveEx != null) {
handles.markException(passHandle, resolveEx);
}
//读取序列化内部变量数据
if (desc.isExternalizable()) {
readExternalData((Externalizable) obj, desc);
} else {
readSerialData(obj, desc);
}
handles.finish(passHandle);//标记句柄对应的对象读取完成
if (obj != null &&
handles.lookupException(passHandle) == null &&
desc.hasReadResolveMethod())//存在替换对象
{
Object rep = desc.invokeReadResolve(obj);
if (unshared && rep.getClass().isArray()) {
rep = cloneArray(rep);
}
if (rep != obj) {
// Filter the replacement object
if (rep != null) {
if (rep.getClass().isArray()) {
filterCheck(rep.getClass(), Array.getLength(rep));
} else {
filterCheck(rep.getClass(), -1);
}
}
handles.setObject(passHandle, obj = rep);
}
}
return obj;
}
那么先来看下怎么读取类的描述信息readClassDesc,从上面方法的case中不能分析出,在没有发生异常使用的情况下,此时的case只会进入TC_PROXYCLASSDESC或者TC_CLASSDESC也就是动态代理类的描述符合普通类的描述符。对于readProxyDesc读取并返回一个动态代理类的类描述符,而readNonProxyDesc则是返回一个普通类的描述符,两个方法都会设置passHandle到动态类描述符的设置句柄。如果类描述符不能被解析为本地虚拟机中的一个类,一个ClassNotFoundException会被关联到描述符的句柄中。关于动态代理和反射的部分下次要再仔细看一下。不过这里又是读取类描述,又是安全检查还有类合法性检查,跟直接在读取端指定类相比额外多出很多开销。
private ObjectStreamClass readClassDesc(boolean unshared)
throws IOException
{
byte tc = bin.peekByte();
ObjectStreamClass descriptor;
switch (tc) {
case TC_NULL:
descriptor = (ObjectStreamClass) readNull();
break;
case TC_REFERENCE:
descriptor = (ObjectStreamClass) readHandle(unshared);
break;
case TC_PROXYCLASSDESC:
descriptor = readProxyDesc(unshared);
break;
case TC_CLASSDESC:
descriptor = readNonProxyDesc(unshared);
break;
default:
throw new StreamCorruptedException(
String.format("invalid type code: %02X", tc));
}
if (descriptor != null) {
validateDescriptor(descriptor);
}
return descriptor;
}
private ObjectStreamClass readProxyDesc(boolean unshared)
throws IOException
{
if (bin.readByte() != TC_PROXYCLASSDESC) {
throw new InternalError();
}
ObjectStreamClass desc = new ObjectStreamClass();
int descHandle = handles.assign(unshared ? unsharedMarker : desc);//添加描述符到句柄缓存中
passHandle = NULL_HANDLE;
int numIfaces = bin.readInt();//接口实现类数量
if (numIfaces > 65535) {
throw new InvalidObjectException("interface limit exceeded: "
+ numIfaces);
}
String[] ifaces = new String[numIfaces];
for (int i = 0; i < numIfaces; i++) {
ifaces[i] = bin.readUTF();//读取接口名
}
Class<?> cl = null;
ClassNotFoundException resolveEx = null;
bin.setBlockDataMode(true);
try {
if ((cl = resolveProxyClass(ifaces)) == null) {
resolveEx = new ClassNotFoundException("null class");
} else if (!Proxy.isProxyClass(cl)) {
throw new InvalidClassException("Not a proxy");
} else {
//这个检查等价于isCustomSubclass
ReflectUtil.checkProxyPackageAccess(
getClass().getClassLoader(),
cl.getInterfaces());
// Filter the interfaces过滤接口
for (Class<?> clazz : cl.getInterfaces()) {
filterCheck(clazz, -1);
}
}
} catch (ClassNotFoundException ex) {
resolveEx = ex;
}
// Call filterCheck on the class before reading anything else
filterCheck(cl, -1);
skipCustomData();
try {
totalObjectRefs++;
depth++;
desc.initProxy(cl, resolveEx, readClassDesc(false));//初始化类描述符
} finally {
depth--;
}
handles.finish(descHandle);
passHandle = descHandle;
return desc;
}
private ObjectStreamClass readNonProxyDesc(boolean unshared)
throws IOException
{
if (bin.readByte() != TC_CLASSDESC) {
throw new InternalError();
}
ObjectStreamClass desc = new ObjectStreamClass();
int descHandle = handles.assign(unshared ? unsharedMarker : desc);//将描述符存储到句柄缓存中,返回句柄值
passHandle = NULL_HANDLE;
ObjectStreamClass readDesc = null;
try {
readDesc = readClassDescriptor();
} catch (ClassNotFoundException ex) {
throw (IOException) new InvalidClassException(
"failed to read class descriptor").initCause(ex);
}
Class<?> cl = null;
ClassNotFoundException resolveEx = null;
bin.setBlockDataMode(true);
final boolean checksRequired = isCustomSubclass();
try {
if ((cl = resolveClass(readDesc)) == null) {//通过类描述解析类
resolveEx = new ClassNotFoundException("null class");
} else if (checksRequired) {
ReflectUtil.checkPackageAccess(cl);
}
} catch (ClassNotFoundException ex) {
resolveEx = ex;
}
// Call filterCheck on the class before reading anything else
filterCheck(cl, -1);
skipCustomData();
try {
totalObjectRefs++;
depth++;
desc.initNonProxy(readDesc, cl, resolveEx, readClassDesc(false));//初始化类描述符
} finally {
depth--;
}
handles.finish(descHandle);
passHandle = descHandle;
return desc;
}
接下来是读取序列化内部变量数据,由于readExternalData除了一些安全性的判断外,直接调用了类中的方法,所以就不看了,直接看readSerialData中默认的读取数据部分defaultReadFields。注意到基本数据类型可以直接通过字节输入流来进行读取,而非基本数据类型则需要递归调用readObject0来读取。
private void defaultReadFields(Object obj, ObjectStreamClass desc)
throws IOException
{
Class<?> cl = desc.forClass();
if (cl != null && obj != null && !cl.isInstance(obj)) {
throw new ClassCastException();
}
int primDataSize = desc.getPrimDataSize();
if (primVals == null || primVals.length < primDataSize) {
primVals = new byte[primDataSize];//第一次进行需要初始化缓冲区,缓冲区不足时需要新建一个更大的缓冲区
}
bin.readFully(primVals, 0, primDataSize, false);//将字节流读取到缓冲区
if (obj != null) {//从readSerialData进入这个方法时obj为null
desc.setPrimFieldValues(obj, primVals);
}
int objHandle = passHandle;
ObjectStreamField[] fields = desc.getFields(false);
Object[] objVals = new Object[desc.getNumObjFields()];
int numPrimFields = fields.length - objVals.length;
for (int i = 0; i < objVals.length; i++) {
ObjectStreamField f = fields[numPrimFields + i];
objVals[i] = readObject0(f.isUnshared());//递归读取非基本数据类型类
if (f.getField() != null) {
handles.markDependency(objHandle, passHandle);//记录依赖
}
}
if (obj != null) {
desc.setObjFieldValues(obj, objVals);
}
passHandle = objHandle;
}
然后看一下其他非基本数据类的读取。readNull读取null代码并将句柄设置为NULL_HANDLE,readString读取UTF编码,readArray需要先读取数组长度,然后根据类的类型进行读取。
private Object readNull() throws IOException {
if (bin.readByte() != TC_NULL) {
throw new InternalError();
}
passHandle = NULL_HANDLE;
return null;
}
private String readString(boolean unshared) throws IOException {
String str;
byte tc = bin.readByte();
switch (tc) {
case TC_STRING:
str = bin.readUTF();
break;
case TC_LONGSTRING:
str = bin.readLongUTF();
break;
default:
throw new StreamCorruptedException(
String.format("invalid type code: %02X", tc));
}
passHandle = handles.assign(unshared ? unsharedMarker : str);
handles.finish(passHandle);
return str;
}
private Object readArray(boolean unshared) throws IOException {
if (bin.readByte() != TC_ARRAY) {
throw new InternalError();
}
ObjectStreamClass desc = readClassDesc(false);
int len = bin.readInt();
filterCheck(desc.forClass(), len);
Object array = null;
Class<?> cl, ccl = null;
if ((cl = desc.forClass()) != null) {
ccl = cl.getComponentType();
array = Array.newInstance(ccl, len);
}
int arrayHandle = handles.assign(unshared ? unsharedMarker : array);
ClassNotFoundException resolveEx = desc.getResolveException();
if (resolveEx != null) {
handles.markException(arrayHandle, resolveEx);
}
if (ccl == null) {
for (int i = 0; i < len; i++) {
readObject0(false);
}
} else if (ccl.isPrimitive()) {
if (ccl == Integer.TYPE) {
bin.readInts((int[]) array, 0, len);
} else if (ccl == Byte.TYPE) {
bin.readFully((byte[]) array, 0, len, true);
} else if (ccl == Long.TYPE) {
bin.readLongs((long[]) array, 0, len);
} else if (ccl == Float.TYPE) {
bin.readFloats((float[]) array, 0, len);
} else if (ccl == Double.TYPE) {
bin.readDoubles((double[]) array, 0, len);
} else if (ccl == Short.TYPE) {
bin.readShorts((short[]) array, 0, len);
} else if (ccl == Character.TYPE) {
bin.readChars((char[]) array, 0, len);
} else if (ccl == Boolean.TYPE) {
bin.readBooleans((boolean[]) array, 0, len);
} else {
throw new InternalError();
}
} else {
Object[] oa = (Object[]) array;
for (int i = 0; i < len; i++) {
oa[i] = readObject0(false);
handles.markDependency(arrayHandle, passHandle);
}
}
handles.finish(arrayHandle);
passHandle = arrayHandle;
return array;
}
readHandle方法从缓存中寻找该对象
private Object readHandle(boolean unshared) throws IOException {
if (bin.readByte() != TC_REFERENCE) {
throw new InternalError();
}
passHandle = bin.readInt() - baseWireHandle;//因为写的时候handle值加上了baseWireHandle
if (passHandle < 0 || passHandle >= handles.size()) {
throw new StreamCorruptedException(
String.format("invalid handle value: %08X", passHandle +
baseWireHandle));
}
if (unshared) {
// REMIND: what type of exception to throw here?
throw new InvalidObjectException(
"cannot read back reference as unshared");
}
Object obj = handles.lookupObject(passHandle);//缓存中寻找该对象
if (obj == unsharedMarker) {
// REMIND: what type of exception to throw here?
throw new InvalidObjectException(
"cannot read back reference to unshared object");
}
filterCheck(null, -1); // just a check for number of references, depth, no class检查引用数量,递归深度,是否有这个类
return obj;
}
跟输出时相同,对象输入流也使用的是块输入流,输入流有两个模式:默认模式下,输入数据写入的格式和DataOutputStream相同;在块数据模式,输入的数据被块数据标记归为一类。逻辑上来说,读和写应该是相对应的,主要是要判断读取到的头部信息,然后根据不同的信息来读取实际信息。有些跟输出部分非常重复的就跳过了
内部变量主要需要注意两个不同的输入流,din是块输入流,in是取数输入流,in中的下层输入流是最初在构造ObjectInputStream中传入的变量,所以通常是FileInputStream。
/** maximum data block length最大数据块长度1K */
private static final int MAX_BLOCK_SIZE = 1024;
/** maximum data block header length最大数据块头部长度 */
private static final int MAX_HEADER_SIZE = 5;
/** (tunable) length of char buffer (for reading strings)可调节的字符缓冲的长度作为供读取的字符串 */
private static final int CHAR_BUF_SIZE = 256;
/** readBlockHeader() return value indicating header read may block readBlockHeader()返回的值指示头部可能阻塞 */
private static final int HEADER_BLOCKED = -2;
/** buffer for reading general/block data读取一般/块数据的缓冲区 */
private final byte[] buf = new byte[MAX_BLOCK_SIZE];
/** buffer for reading block data headers读取块数据头部的缓冲区 */
private final byte[] hbuf = new byte[MAX_HEADER_SIZE];
/** char buffer for fast string reads快速字符串读取的字符缓冲区 */
private final char[] cbuf = new char[CHAR_BUF_SIZE];
/** block data mode块数据模式 */
private boolean blkmode = false;
// block data state fields; values meaningful only when blkmode true块数据状态字段,这些值仅在blkmode为true时有意义
/** current offset into buf当前进入buf的偏移 */
private int pos = 0;
/** end offset of valid data in buf, or -1 if no more block data buf中有效值的结束偏移,没有更多块数据buf时为-1 */
private int end = -1;
/** number of bytes in current block yet to be read from stream 在当前block中还没有从流中读取的字节数 */
private int unread = 0;
/** underlying stream (wrapped in peekable filter stream) 下层流包装在可见过滤流中 */
private final PeekInputStream in;
/** loopback stream (for data reads that span data blocks) 回路流用于扩展数据块的数据读取 */
private final DataInputStream din;
构造函数就是初始化两个流变量
BlockDataInputStream(InputStream in) {
this.in = new PeekInputStream(in);
din = new DataInputStream(this);
}
setBlockDataMode将块数据模式设为给定的模式,true是打开,off是关闭,并返回之前的模式值。如果新的模式和旧模式一样,什么都不做。如果块数据模式从打开被改为关闭时有未消费的块数据还留在流中,会抛出IllegalStateException
boolean setBlockDataMode(boolean newmode) throws IOException {
if (blkmode == newmode) {
return blkmode;
}
if (newmode) {//从关闭到打开,重置块数据参数状态
pos = 0;
end = 0;
unread = 0;
} else if (pos < end) {//从打开到关闭且有未消费的块数据
throw new IllegalStateException("unread block data");
}
blkmode = newmode;
return !blkmode;
}
skipBlockData如果在块数据模式,跳跃到数据块的当前组的末尾但不会取消块数据模式。如果不在块数据模式,抛出IllegalStateException。这个方法调用了refill,refill用块数据再装满内部缓冲区。任何buf中的数据在调用这个方法时被认为是已经被消费了。设置pos、end、unread字段值来反映有效块数据的数量。如果流中的下一个元素不是一个数据块,设置pos=0和unread=0,end=-1
void skipBlockData() throws IOException {
if (!blkmode) {
throw new IllegalStateException("not in block data mode");
}
while (end >= 0) {
refill();
}
}
private void refill() throws IOException {
try {
do {
pos = 0;
if (unread > 0) {//当前block中还有未读取的字节
int n =
in.read(buf, 0, Math.min(unread, MAX_BLOCK_SIZE));//读取unread和最大数据块长度中的较小值的数据到buf中
if (n >= 0) {
end = n;//end为读取到的字节数
unread -= n;//当前block中还没读取的字节减少n
} else {
throw new StreamCorruptedException(
"unexpected EOF in middle of data block");
}
} else {
int n = readBlockHeader(true);
if (n >= 0) {
end = 0;
unread = n;
} else {
end = -1;
unread = 0;
}
}
} while (pos == end);//成功读取到数据就会退出循环
} catch (IOException ex) {//出现异常说明下一个元素不是数据块
pos = 0;
end = -1;
unread = 0;
throw ex;
}
}
readBlockHeader尝试读取下一个块数据头部。如果canBlock是false并且一个完整的头部没有阻塞时不能被读取,返回HEADER_BLOCKED。否则如果流中下一个元素是一个块数据头部,返回头部标识的这个块数据的长度,否则返回-1
private int readBlockHeader(boolean canBlock) throws IOException {
if (defaultDataEnd) {
/*
* 流当前在一个字段值块通过默认序列化写入的末尾。因为没有终点TC_ENDBLOCKDATA标志,
* 明确地模仿常规数据结束行为。
*/
return -1;
}
try {
for (;;) {
int avail = canBlock ? Integer.MAX_VALUE : in.available();//可以阻塞时avail是最大整数,不能阻塞时是流中能读取的字节数
if (avail == 0) {
return HEADER_BLOCKED;//没有可读取的字节数时返回HEADER_BLOCKED
}
int tc = in.peek();//从流中取数
switch (tc) {
case TC_BLOCKDATA://第二个字节是块数据长度
if (avail < 2) {
return HEADER_BLOCKED;
}
in.readFully(hbuf, 0, 2);
return hbuf[1] & 0xFF;
case TC_BLOCKDATALONG://块字节长度需要4个字节来表示
if (avail < 5) {
return HEADER_BLOCKED;
}
in.readFully(hbuf, 0, 5);
int len = Bits.getInt(hbuf, 1);//位运算获取后4位的整数值
if (len < 0) {
throw new StreamCorruptedException(
"illegal block data header length: " +
len);
}
return len;
/*
* TC_RESET可能发生在数据块之间。不幸的是,这个状况必须在比其他类型标志更低的级别被解析,
* 因为原始数据读取可能跨越被TC_RESET分割的数据块
*/
case TC_RESET:
in.read();//跳过这个头部
handleReset();//重置
break;
default:
if (tc >= 0 && (tc < TC_BASE || tc > TC_MAX)) {
throw new StreamCorruptedException(
String.format("invalid type code: %02X",
tc));
}
return -1;
}
}
} catch (EOFException ex) {
throw new StreamCorruptedException(
"unexpected EOF while reading block data header");
}
}
单个字节的read和peek都是基于refill来完成的,而read多字节时,最大不能超过缓冲区内剩余的字节,如果copy为true,需要先将字节读取到一个内部缓冲区再复制到目标数组,又增加开销。
int read(byte[] b, int off, int len, boolean copy) throws IOException {
if (len == 0) {
return 0;
} else if (blkmode) {
if (pos == end) {
refill();
}
if (end < 0) {
return -1;
}
int nread = Math.min(len, end - pos);//最大不超过缓冲区内剩余的字节
System.arraycopy(buf, pos, b, off, nread);
pos += nread;
return nread;
} else if (copy) {//copy模式先将数据读取到一个缓冲区,再从缓冲区复制到目标数组
int nread = in.read(buf, 0, Math.min(len, MAX_BLOCK_SIZE));
if (nread > 0) {
System.arraycopy(buf, 0, b, off, nread);
}
return nread;
} else {
return in.read(b, off, len);
}
}
readFully循环调用read直到达到要读取的字节数,如果不足会抛出EOFException
public void readFully(byte[] b, int off, int len, boolean copy)
throws IOException
{
while (len > 0) {
int n = read(b, off, len, copy);
if (n < 0) {
throw new EOFException();
}
off += n;
len -= n;
}
}
比起输入流来,输入流的缓存表多了一个HandleList[] deps用来存储依赖,HandleList可以理解为一个简易版的ArrayList,当数组被填满再次增加元素的时候,自动分配一个新的2倍大小的数组,把旧的元素复制过去再插入新的。另外两个数组,Object[] entries存储对象或异常,byte[] status存储对象的状态。并且这个缓存表并没有使用hash,它是依靠ObjectInputStream中的passHandle来获取位置的。
/** array mapping handle -> object status 句柄->对象状态的数组映射*/
byte[] status;
/** array mapping handle -> object/exception (depending on status) */
Object[] entries;
/** array mapping handle -> list of dependent handles (if any) */
HandleList[] deps;
/** lowest unresolved dependency 最低的未解决依赖*/
int lowDep = -1;
/** number of handles in table */
int size = 0;
从assign我们可以看到,对象和它的状态(默认为UNKNOWN)被顺序存储到了数组中,并返回下标值
int assign(Object obj) {
if (size >= entries.length) {
grow();
}
status[size] = STATUS_UNKNOWN;
entries[size] = obj;
return size++;
}
关于deps这个数组到底是干什么的,我们可以一步步来分析。首先,寻找deps在HandleTable中被修改的地方,除了构造时初始化以外,finish中deps对应状态为UNKNOWN状态的全部被设为NULL,clear当中deps全部为设为null,grow当中新建了一个大小是原本2倍加1的deps数组并复制了原有内容来取代之前的数组,这些都不足以分析它的用途,关键在markDependency和markException两个方法中。首先markException我们可以看到所有调用都是发生在出现ClassNotFoundException的时候,传入的参数是这个类的handle值和异常。markDependency关联一个ClassNotFoundException和当前活动句柄并传播它到其他合适的引用对象。这个特定的句柄必须是打开的。简单的来说,如果一个类解析失败,那么添加到entries缓存里的对象会是一个异常,它对应的status为STATUS_EXCEPTION
void markException(int handle, ClassNotFoundException ex) {
switch (status[handle]) {
case STATUS_UNKNOWN:
status[handle] = STATUS_EXCEPTION;//标记当前对象状态为异常
entries[handle] = ex;//修改缓存中的对象为异常
// propagate exception to dependents传播异常给依赖
HandleList dlist = deps[handle];
if (dlist != null) {
int ndeps = dlist.size();
for (int i = 0; i < ndeps; i++) {
markException(dlist.get(i), ex);//递归传播依赖列表内的所有对象
}
deps[handle] = null;//清除依赖表中的对象,因为只要再有对象关联到相同类它必然是会从缓存中获取异常,不再需要依赖表项
}
break;
case STATUS_EXCEPTION:
break;
default:
throw new InternalError();
}
}
再来看一下markDependency的调用,一处是在readObject调用readObject0之后,传入参数是上一层对象的句柄和本层对象的句柄;一处是在readArray中读取非基本数据类型调用readObject0之后,传入参数也是上一层对象的句柄和本层对象的句柄;一处是在defaultReadFields中递归读取非基本数据类中,传入参数也是上一层对象的句柄和本层对象的句柄。总之,根据上面这几个例子再结合方法的注释,我们可以推测出这里deps的作用是在一层层读取对象时,比如自定义类中又又自定义类,记录下一层指向上一层的关系,用来传递异常状态。很明显,从代码中可以看出,在存在依赖双方的情况下,如果上一层状态是UNKNOWN,下一层状态是EXCEPTION,则从依次向上将整个依赖表上所有的状态全部置为EXCEPTION,如果下一层也是UNKNOWN状态,则在下一层的依赖表中增加上一层的句柄,并将未知状态最底层设为target。如果上一层状态是OK,则出现InternalError,因为上一层的句柄已经被关闭,不能再增加对它依赖的对象。
void markDependency(int dependent, int target) {
if (dependent == NULL_HANDLE || target == NULL_HANDLE) {
return;
}
switch (status[dependent]) {
case STATUS_UNKNOWN:
switch (status[target]) {
case STATUS_OK:
// ignore dependencies on objs with no exception忽略没有异常的对象上依赖
break;
case STATUS_EXCEPTION:
// eagerly propagate exception急切传播的异常
markException(dependent,
(ClassNotFoundException) entries[target]);//如果依赖是未知状态也需将它们改为异常状态
break;
case STATUS_UNKNOWN:
// add to dependency list of target增加到依赖目标列表
if (deps[target] == null) {
deps[target] = new HandleList();
}
deps[target].add(dependent);
// remember lowest unresolved target seen记录被看见最低的未解决目标
if (lowDep < 0 || lowDep > target) {
lowDep = target;
}
break;
default:
throw new InternalError();
}
break;
case STATUS_EXCEPTION:
break;
default:
throw new InternalError();
}
}
finish是关闭句柄,是唯一可以将状态设为STATUS_OK的方法,标记给出的句柄为结束状态,说明这个句柄不会有新的依赖标记。调用设置和结束方法必须以后进先出的顺序。必须要handle之前不存在无法确认的状态才能修改状态为OK
void finish(int handle) {
int end;
if (lowDep < 0) {
// 没有还没处理的未知状态,只需要解决当前句柄
end = handle + 1;
} else if (lowDep >= handle) {
// handle之后存在还没有处理的未知状态,但上层句柄都已经解决了
end = size;
lowDep = -1;
} else {
// handle之前还有没有处理的向前引用,还不能解决所有对象
return;
}
// change STATUS_UNKNOWN -> STATUS_OK in selected span of handles
for (int i = handle; i < end; i++) {
switch (status[i]) {
case STATUS_UNKNOWN:
status[i] = STATUS_OK;
deps[i] = null;
break;
case STATUS_OK:
case STATUS_EXCEPTION:
break;
default:
throw new InternalError();
}
}
}
手机扫一扫
移动阅读更方便
你可能感兴趣的文章