\(F(x,y,{y}',{y}'',…,{y}^{(n)})=0\)
阶数一方程中y的最高阶导数的阶数
\(如:ysinx-{y}''=cosx+2就是二阶微分方程,\begin{cases} n=1,一阶\\ n\geq2,高阶 \end{cases}\)
通解 --- 解中所含独立常数的个数=方程的阶数
\(形如\frac{\text{dy}}{\text{dx}}=f(x,y)=g(x)h(y)\Rightarrow\frac{\text{dy}}{\text{h(y)}}=g(x)dx\Rightarrow\int\frac{\text{dy}}{\text{h(y)}}=\int g(x)dx\)
\(形如\frac{\text{dy}}{\text{dx}}=f(\frac{y}{x})\Rightarrow y=ux \Rightarrow {y}'={u}'x+u \Rightarrow {u}'x+u=f(u) \Rightarrow \frac{\text{du}}{\text{dx}}x=f(u)-u \Rightarrow \frac{du}{f(u)-u}=\frac{dx}{x}\Rightarrow \int\frac{du}{f(u)-u}=\int\frac{dx}{x}\)
\(形如:{y}'+p(x)y=q(x), p(x),q(x)为已知函数 \Rightarrow y=e^{-\int p(x)dx}(\int e^{\int p(x)dx}q(x)dx+C\)
手机扫一扫
移动阅读更方便
你可能感兴趣的文章