能够保证在同一时间段内仅有一个goroutine持有锁,有且仅有一个goroutine访问共享资源,其他申请锁的goroutine将会被阻塞直到锁被释放。然后重新争抢锁的持有权。
结构体和方法:
type Locker interface {
Lock()
UnLocker
}
func (m *Mutex) Lock()
func (m *Mutex) UnLock()
package main
import (
"fmt"
"sync"
"time"
)
func main() {
//互斥锁
var lock sync.Mutex
go func() {
//加锁
lock.Lock()
//释放锁
defer lock.Unlock()
fmt.Println("func1 get lock at " + time.Now().String())
time.Sleep(time.Second)
fmt.Println("func1 release lock " + time.Now().String())
}()
time.Sleep(time.Second / 10)
go func() {
lock.Lock()
defer lock.Unlock()
fmt.Println("func2 get lock at " + time.Now().String())
time.Sleep(time.Second)
fmt.Println("func1 release lock " + time.Now().String())
}()
//等待所有goroutine执行完毕
time.Sleep(time.Second * 4)
}
输出结果:
将读锁和写锁分离开来满足以下条件
结构体和方法:
type RWMutex struct {
w Mutex // held if there are pending writers
writerSem uint32 // semaphore for writers to wait for completing readers
readerSem uint32 // semaphore for readers to wait for completing writers
readerCount int32 // number of pending readers
readerWait int32 // number of departing readers
}
func (rw *RWMutex) Lock() //写加锁
func (rw *RWMutex) UnLock() //写解锁
func (rw *RWMutex) RLock() //读加锁
func (rw *RWMutex) RUnLock() //读解锁
package main
import (
"fmt"
"strconv"
"sync"
"time"
)
var rwLock sync.RWMutex
func main() {
//获取读锁
for i := 0; i < 5; i++ {
go func(i int) {
rwLock.RLocker()
defer rwLock.RLocker()
fmt.Println("read func " + strconv.Itoa(i) + " get lock at " + time.Now().String())
time.Sleep(time.Second)
}(i)
}
time.Sleep(time.Second / 10)
//获取写锁
for i := 0; i < 5; i++ {
go func(i int) {
rwLock.Lock()
defer rwLock.Unlock()
fmt.Println("write func " + strconv.Itoa(i) + " get lock at " + time.Now().String())
time.Sleep(time.Second)
}(i)
}
//保证所有的goroutine执行结束
time.Sleep(time.Second * 4)
}
输出结果:
sync.WaitGroup的goroutine会等待预设好的数量的goroutine都提交执行结束后,才会继续往下执行代码,调用Wait方法之前,必须先执行Add方法,还需要保证Done方法和Add添加的等待数量一致,过少会导致等待goroutine死锁,过多会导致程序panic,适用于执行批量操作,等待所有goroutine执行结束后统一返回结果。
package main
import (
"fmt"
"strconv"
"sync"
"time"
)
func main() {
var waitGroup sync.WaitGroup
//添加等待goroutine数量为5
waitGroup.Add(5)
for i := 0; i < 5; i++ {
go func(i int) {
fmt.Println("work " + strconv.Itoa(i) + " is done at " + time.Now().String())
//等待1s后减少等待数1
time.Sleep(time.Second)
waitGroup.Done()
}(i)
}
waitGroup.Wait()
fmt.Println("all works are done at " + time.Now().String())
}
输出结果:
go中的原生map并不是并发安全的,Go语言1.9之后有sync.Map
package main
import (
"fmt"
"strconv"
"sync"
)
var syncMap sync.Map
var waitGroup sync.WaitGroup
func main() {
routineSize := 5
//让主线程等待数据添加完毕
waitGroup.Add(routineSize)
//并发添加数据
for i := 0; i < routineSize; i++ {
go addNumber(i * 10)
}
waitGroup.Wait()
var size int
//统计数量
syncMap.Range(func(key, value interface{}) bool {
size++
// fmt.Println("key-value pair is ", key, value, " ")
return true
})
fmt.Println("syncMap current size is " + strconv.Itoa(size))
//获取键为0的值
value, ok := syncMap.Load(0)
if ok {
fmt.Println("key 0 has value", value, " ")
}
}
func addNumber(begin int) {
//往syncMap中放入数据
for i := begin; i < begin+3; i++ {
syncMap.Store(i, 1)
}
//通知数据已添加完毕
waitGroup.Done()
}
输出结果:
提供了初始化延迟功能,done用来记录执行的次数,用m来保证只有一个goroutine在执行Do方法
package main
import (
"fmt"
"sync"
)
var once sync.Once
var waitGroup sync.WaitGroup
func main() {
for i := 0; i < 10; i++ {
waitGroup.Add(1)
go func() {
defer waitGroup.Done()
once.Do(OnlyOnce)
}()
}
waitGroup.Wait()
}
func OnlyOnce() {
fmt.Println("only once")
}
输出结果:
通过弄个条件控制多个goroutine,不满足条件进行等待,进入等待后即使后续满足条件需要通过Broadcast()或者Signal()来唤醒notifyList内的goroutine
结构体和方法:
type Cond struct {
noCopy noCopy
//L用来读写Cond时加锁
L Locker
//以下是包外不可见变量
notify notifyList //通知列表
checker copyChecker
}
func NewCond(l Locker) *Cond
//BroadCast用于向所有等待的goroutine发送通知,通知条件已经满足
func (c *Cond) BroadCast()
//Singnal方法用于向特定的单个goroutine发送通知
func (c *Cond) Singnal()
func (c *Cond) Wait()
package main
import (
"fmt"
"sync"
"time"
)
var (
ready = false
singerNum = 3
)
func Sing(singerId int, c *sync.Cond) {
fmt.Printf("Singer (%d) is ready\n", singerId)
c.L.Lock()
for !ready {
fmt.Printf("Singer (%d) is waiting\n", singerId)
c.Wait()
}
fmt.Printf("Singer (%d) sing a song\n", singerId)
ready = false
c.L.Unlock()
}
func main() {
cond := sync.NewCond(&sync.Mutex{})
for i := 0; i < singerNum; i++ {
go Sing(i, cond)
}
time.Sleep(3 * time.Second)
for i := 0; i < singerNum; i++ {
ready = true
cond.Broadcast()
// cond.Signal()
time.Sleep(3 * time.Second)
}
}
Broadcast方法测试:
Signal方法测试:
并发安全的,大小可伸缩,仅受限于内存。存入Pool的对象可能会在不通知的情况下被释放,比如一些socket长连接就不适合放入Pool内
结构体和方法:
type Pool struct {
noCopy noCopy
local unsafe.Pointer //本地缓冲池指针,每个处理器分配一个,其类型是一个{p}poolLocal的数组
lcoalSize uintptr //数组大小
New func() interface {} //缓存池中没有对象时,调用此方法创建一个
}
//从池中获取对象,如果没有对象调用New创建一个,未设置New返回nil
func (p *Pool) Get() interface{}
//向池中添加对象
func (p *Pool) Put(interface{})
Pool在运行时为每个操作Pool的goroutine所关联的P(GMP模型中的P)都创建一个本地池。在执行Get方法的时候,会先从本地池中获取,如果本地池没有则从其他P的本地池获取。这种特性让Pool的存储压力基于P进行了分摊。
package main
import (
"fmt"
"sync"
"time"
)
var byteSlicePool = sync.Pool{
New: func() interface{} {
b := make([]byte, 1024)
return &b
},
}
func main() {
t1 := time.Now().Unix()
//不使用Pool
for i := 0; i < 10000000000; i++ {
bytes := make([]byte, 1024)
_ = bytes
}
t2 := time.Now().Unix()
//使用Pool
for i := 0; i < 10000000000; i++ {
bytes := byteSlicePool.Get().(*[]byte)
_ = bytes
byteSlicePool.Put(bytes)
}
t3 := time.Now().Unix()
fmt.Printf("不使用Pool:%d s\n", t2-t1)
fmt.Printf("使用Pool:%d s\n", t3-t2)
}
输出结果:
手机扫一扫
移动阅读更方便
你可能感兴趣的文章