Distributed | MapReduce
阅读原文时间:2023年07月08日阅读:4

最近终于抽出时间开始学习MIT 6.824,本文为我看MapReduce论文和做lab后的总结。

[MapReduce英文论文]

lab要用到go语言,这也是我第一次接触。可以参考go语言圣经学习基本语法。

[Go语言圣经]

MapReduce描述了一种编程模型,由处理数据的map函数生成中间键值对(Key/Value),再由Reduce函数处理中间键值对生成输出文件。根据用户自定义的map和reduce函数不同,可以实现不同的功能。下面我简单总结了个人觉得比较关键的部分。

执行概述

在MapReduce中存在两种程序:master (也即lab中的coordinator) 和worker。master负责分配任务和接受反馈,更新任务列表。worker负责完成map和reduce任务。

在程序运行前,mapreduce库会将输入的数据切分成M个片段,即M个map任务,然后启动master和worker。master会对每个空闲的worker分配map或者reduce任务。

被分配了map任务的worker读取相应任务的数据,解析出键值对,生成中间键值对存入本地磁盘。这些键值对根据key的不同,被分区函数划分到R个区域内。worker将这些数据的位置传回master,master会将这些位置转发给执行reduce操作的worker。

执行reduce任务的worker在接受任务后,使用RPC的方式读取数据,并根据key进行排序,然后调用reduce函数生成R个输出文件。

容错

由于数百上千台机器同时运行,发生网络故障/设备中断是常有的事情,因此需要应对故障的方案。

worker故障

master会周期性的ping下每个worker,如果在一定时间内收不到来自某个worker的响应,master就会将该worker标记为failed,该worker正在执行的任务会被重置为【待执行】。master会将这些任务交给其他worker重新执行。

对于已经执行完的任务。如果是已完成的map任务,由于中间数据储存在发生故障的worker磁盘中,无法读取,因此需要重新执行该任务。如果是reduce任务则无须再执行,因为完成时输出文件已经储存在全局系统中。

master故障

一种解决方案是,将master上的数据周期性地写入磁盘,发生故障后从最新的checkpoint创建出一个新的备份,重启master进程。但往往需要人工干预。

Master的数据结构

在Master中包含了一些数据结构。它保存了每个Map任务和每个Reduce任务的状态(闲置,正在运行,以及完成),以及非空闲任务的worker机器的ID。

备用任务

在MapReduce计算中,一台机器花费了异常长的时间去完成最后几个Map或者Reduce任务会导致执行总时间延长很多。因此当一个MapReduce任务接近完成时,master可以调度一个备用(backup)任务来执行正在执行的任务。无论是主任务还是备用任务完成,都视为整个计算完成。可以显著减少大型计算花费的时间。

虽然看论文的时候感觉自己对MapReduce的执行过程了解的比较透彻,但是在实际实现全过程的时候才发现有很多地方没有注意到。果然是实践出真知。

在过程中遇到的一个比较大的坑是我对go的struct不够了解。go中struct用变量名的首字母大小写来区分public和private(可导出和不可导出),习惯了驼峰命名法的我并没有注意到。因此在测试的时候才需要全盘修改,花费了一些精力。

在lab中我们要实现的是一个在本地机器执行的mapreduce任务。和论文中介绍的不同,这个mapreduce没有实现对worker的周期检测,也不需要储存每个worker的状态,而是当worker在一段时间(lab中为10s)内没有完成任务时,直接将该worker视为故障,重新分配任务。并且任务时由worker主动申请再由master进行分配。这对于小任务是可行的,但对于无法预测时间的大型任务,应当按论文中进行实现。

在执行过程中,必须要先将map任务全部执行完,才能执行reduce任务。因为reduce任务要读取全部数据进行排序。当map任务已经分配完但没有全部完成时,部分没有任务可以执行的worker可能会空转。

for {
        switch reply.State{
        case 0:
            //map任务
        case 1:
            //reduce任务
        case 2:
            continue //暂时没有任务,等待下一次申请
        case 3:
            break   //所有任务均已完成,worker停止工作
        }

在任务分配上,我简单的采用了数组初始化所有任务,在分配任务时从数组中寻找【待执行】的任务(即state为0),更优化的方式可以考虑任务队列。将任务依次入队,对已经执行的任务出队,如果任务执行失败(超时),则重新入队。这样免去了遍历的过程。

因为在mrcoordinator.go中我们可以看到,每隔1s中会执行一次c.Done(),因此可以在c.Done()中增加每次任务的运行时间。

m := mr.MakeCoordinator(os.Args[1:], 10)
    for m.Done() == false {
        time.Sleep(time.Second)
    }

论文中提到通过写入临时文件并重命名它的方式,可以避免在崩溃生成部分写入的文件,造成混乱。ioutil库可以创建临时文件,并在写入结束后重命名为标准文件格式。

在实际上手时,可以先从worker开始,根据程序中给的example,分析执行过程,再在程序中添加对应的实现。RPC调用的函数必须要有返回值,否则运行时会报错找不到该函数。

以下为实现代码,通过了全部测试。

//worker.go

package mr

import "fmt"
import "log"
import "net/rpc"
import "hash/fnv"
import (
    "time"
    "os"
    "sort"
    "io/ioutil"
    "strconv"
    "encoding/json"
)
//
// Map functions return a slice of KeyValue.
//
type KeyValue struct {
    Key   string
    Value string
}

type ByKey []KeyValue

// for sorting by key.
func (a ByKey) Len() int           { return len(a) }
func (a ByKey) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }
func (a ByKey) Less(i, j int) bool { return a[i].Key < a[j].Key }

//
// use ihash(key) % NReduce to choose the reduce
// task number for each KeyValue emitted by Map.
//
func ihash(key string) int {
    h := fnv.New32a()
    h.Write([]byte(key))
    return int(h.Sum32() & 0x7fffffff)
}

//
// main/mrworker.go calls this function.
//
func Worker(mapf func(string, string) []KeyValue,
    reducef func(string, []string) string) {

    // Your worker implementation here.

    // uncomment to send the Example RPC to the coordinator.
    // CallExample()
    for {
        time.Sleep(time.Second) //睡眠一秒再接任务
        args := ASKArgs{}
        reply := ASKReply{}
        callAskTask(&args, &reply)
        taskNumber := reply.TaskNumber
        switch reply.State{
        case 0:
            file, err := os.Open(reply.FileName)
            if err != nil {
                log.Fatalf("cannot open mapTask file", reply.FileName)
            }
            content, err := ioutil.ReadAll(file)
            if err != nil {
                log.Fatalf("cannot read mapTask file", reply.FileName)
            }
            file.Close()
            kva := mapf(reply.FileName, string(content))
            //写入mr-taskNumber-y文件中
            WriteMiddleFile(kva, taskNumber, reply.NReduce)
        case 1:
            intermediate := []KeyValue{}
            nmap := reply.NMap
            for i:=0; i<nmap ; i++ {
                mapFile := "mr-" + strconv.Itoa(i) + "-" + strconv.Itoa(taskNumber)
                inputFile, err := os.OpenFile(mapFile, os.O_RDONLY, 0666)
                if err != nil {
                    log.Fatalf("can not open reduceTask", mapFile)
                }
                dec := json.NewDecoder(inputFile)
                for {
                    var kv []KeyValue
                    if err := dec.Decode(&kv); err != nil {
                        break
                    }
                    intermediate = append(intermediate, kv...)
                }
            }
            sort.Sort(ByKey(intermediate))
            outFile := "mr-out-" + strconv.Itoa(taskNumber)
            tempReduceFile, err := ioutil.TempFile("", "mr-reduce-*")
            if err != nil {
                log.Fatalf("cannot open", outFile)
            }
            i := 0
            for i < len(intermediate) {
                j := i + 1
                for j < len(intermediate) && intermediate[j].Key == intermediate[i].Key {
                    j++
                }
                values := []string{}
                for k := i; k < j; k++ {
                    values = append(values, intermediate[k].Value)
                }
                output := reducef(intermediate[i].Key, values)

                // this is the correct format for each line of Reduce output.
                fmt.Fprintf(tempReduceFile, "%v %v\n", intermediate[i].Key, output)

                i = j
            }
            tempReduceFile.Close()
            os.Rename(tempReduceFile.Name(), outFile)
        case 2:
            continue //暂时没有任务,等待下一次申请
        case 3:
            break   //所有任务均已完成,worker停止工作
        }
        Args := FinishAgrs{State: reply.State, TaskNumber:taskNumber}
        Reply := FinishReply{}
        callFinishTask(&Args, &Reply)
        if Reply.State == 1 {
            break
        }
    }

}

func WriteMiddleFile(kva []KeyValue, taskNumber int, nReduce int) bool {
    buffer := make([][]KeyValue, nReduce)
    for _, value := range(kva) {
        area := (ihash(value.Key)) % nReduce
        buffer[area] = append(buffer[area], value)
    }
    for area, output := range(buffer) {
        outputFile := "mr-" + strconv.Itoa(taskNumber) + "-" + strconv.Itoa(area)
        tempMapFile, err := ioutil.TempFile("", "mr-map-*")
        if err != nil {
            log.Fatalf("cannot open tempMapFile")
        }
        enc := json.NewEncoder(tempMapFile)
        err = enc.Encode(output)
        if err != nil {
            return false
        }
        tempMapFile.Close()
        os.Rename(tempMapFile.Name(), outputFile)  //通过原子地重命名避免写入时崩溃,导致内容不完整
    }
    return true
}

func callAskTask(args *ASKArgs, reply *ASKReply){
    call("Coordinator.ASKTask", &args, &reply)
}

func callFinishTask(args *FinishAgrs, reply *FinishReply){
    call("Coordinator.FinishTask", &args, &reply)
}

//
// send an RPC request to the coordinator, wait for the response.
// usually returns true.
// returns false if something goes wrong.
//
func call(rpcname string, args interface{}, reply interface{}) bool {
    // c, err := rpc.DialHTTP("tcp", "127.0.0.1"+":1234")
    sockname := coordinatorSock()
    c, err := rpc.DialHTTP("unix", sockname)
    if err != nil {
        log.Fatal("dialing:", err)
    }
    defer c.Close()

    err = c.Call(rpcname, args, reply)
    if err == nil {
        return true
    }

    fmt.Println(err)
    return false
}



//rpc.go

package mr

//
// RPC definitions.
//
// remember to capitalize all names.
//

import "os"
import "strconv"

//
// example to show how to declare the arguments
// and reply for an RPC.
//

type ASKArgs struct {
    //申请时不需要任何信息
}

type ASKReply struct {
    State int //0-map 1-reduce 2-wait 3-shutdown
    FileName string //文件名
    TaskNumber int  //任务号
    NReduce int     //reduce任务中的分区数
    NMap int        //Map任务的总数
}

type FinishAgrs struct{
    State int           //同reply,用于更新Coordinator状态
    TaskNumber int
}

type FinishReply struct{
    State int       //0-继续接受任务 1-任务全部完成,关闭worker
}

// Add your RPC definitions here.

// Cook up a unique-ish UNIX-domain socket name
// in /var/tmp, for the coordinator.
// Can't use the current directory since
// Athena AFS doesn't support UNIX-domain sockets.
func coordinatorSock() string {
    s := "/var/tmp/824-mr-"
    s += strconv.Itoa(os.Getuid())
    return s
}



//coordinator.go

package mr

import "log"
import "net"
import "os"
import "net/rpc"
import "net/http"
import (
    "sync"
)

//缺少检测故障,不能主动分配任务
//由设备主动申请任务,不需要轮训检查设备是否响应,因此不需要机器号

type Coordinator struct {
    State int           //0-map 1-reduce 2-finish
    NMap int            //map任务总数
    NReduce int         //reduce分区数
    MapTask map[int]*mapTask    //map任务数组
    ReduceTask map[int]*reduceTask  //reduce任务数组
    Mu sync.Mutex
}

type mapTask struct {
    FileName string
    State int           //0-待做 1-进行中 2-已完成
    RunTime int
}

type reduceTask struct {
    State int         //0-待做 1-进行中 2-已完成
    RunTime int
}

func (c *Coordinator) TickTick() {
    if c.State == 0 {
        for TaskNumber, task := range(c.MapTask){
            if task.State == 1 {
                c.MapTask[TaskNumber].RunTime += 1
                if c.MapTask[TaskNumber].RunTime>=10 {
                    c.MapTask[TaskNumber].State = 0
                }
            }
        }
    } else if c.State == 1 {
        for TaskNumber, task := range(c.ReduceTask){
            if task.State == 1 {
                c.ReduceTask[TaskNumber].RunTime += 1
                if c.ReduceTask[TaskNumber].RunTime>=10 {
                    c.ReduceTask[TaskNumber].State = 0
                }
            }
        }
    }
}

func (c *Coordinator) ASKTask(args *ASKArgs, reply *ASKReply) error{
    c.Mu.Lock()
    defer c.Mu.Unlock()
    reply.State = 2
    reply.NMap = c.NMap
    reply.NReduce = c.NReduce
    switch c.State {
    case 0:
        for TaskNumber, task := range(c.MapTask) {
            if task.State == 0 {
                reply.FileName = task.FileName
                reply.State = 0
                reply.TaskNumber = TaskNumber
                c.MapTask[TaskNumber].State = 1
                break
            }
        }
    case 1:
        for TaskNumber, task := range(c.ReduceTask) {
            if task.State == 0 {
                reply.State = 1
                reply.TaskNumber = TaskNumber
                c.ReduceTask[TaskNumber].State = 1
                break
            }
        }
    case 2:
        reply.State = 3
    }
    return nil
}

func (c *Coordinator) FinishTask(args *FinishAgrs, reply *FinishReply) error{
    c.Mu.Lock()
    defer c.Mu.Unlock()
    reply.State = 0
    if args.State == 0 {
        c.MapTask[args.TaskNumber].State = 2
        c.CheckState()
    } else {
        c.ReduceTask[args.TaskNumber].State = 2
        c.CheckState()
        if c.State == 2 {
            reply.State = 1
        }
    }
    return nil
}

func (c *Coordinator) CheckState() {
    for _, task := range(c.MapTask) {
        if task.State == 0 || task.State == 1 {
            c.State = 0
            return
        }
    }
    for _, task := range(c.ReduceTask) {
        if task.State == 0 || task.State == 1 {
            c.State = 1
            return
        }
    }
    c.State = 2
}

//
// start a thread that listens for RPCs from worker.go
//
func (c *Coordinator) server() {
    rpc.Register(c)
    rpc.HandleHTTP()
    //l, e := net.Listen("tcp", ":1234")
    sockname := coordinatorSock()
    os.Remove(sockname)
    l, e := net.Listen("unix", sockname)
    if e != nil {
        log.Fatal("listen error:", e)
    }
    go http.Serve(l, nil)
}

//
// main/mrcoordinator.go calls Done() periodically to find out
// if the entire job has finished.
//
func (c *Coordinator) Done() bool {
    c.Mu.Lock()
    defer c.Mu.Unlock()
    ret := false
    c.TickTick()            //在每次检查是否完成时,增加任务时间
    if c.State == 2 {
        ret = true
    } else {
        ret = false
    }
    return ret
}

//
// create a Coordinator.
// main/mrcoordinator.go calls this function.
// nReduce is the number of reduce tasks to use.
//
func MakeCoordinator(files []string, nReduce int) *Coordinator {
    maptask := make(map[int]*mapTask)
    reducetask := make(map[int]*reduceTask)
    for i, filename := range(files) {
        maptask[i] = &mapTask{FileName: filename, State: 0, RunTime: 0}
    }
    for j := 0; j < nReduce; j++ {
        reducetask[j] = &reduceTask{State: 0, RunTime: 0}
    }
    c := Coordinator{State: 0, NMap: len(files), NReduce: nReduce, MapTask: maptask, ReduceTask: reducetask, Mu: sync.Mutex{}}
    c.server()
    return &c
}

手机扫一扫

移动阅读更方便

阿里云服务器
腾讯云服务器
七牛云服务器

你可能感兴趣的文章