**Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 969 Accepted Submission(s): 384
**
Problem Description
Given the sequence A with n integers t1,t2,⋯,tn. Given the integral coefficients a and b. The fact that select two elements ti and tj of A and i≠j to maximize the value of at2i+btj, becomes the largest point.
Input
An positive integer T, indicating there are T test cases.
For each test case, the first line contains three integers corresponding to n (2≤n≤5×106), a (0≤|a|≤106) and b (0≤|b|≤106). The second line contains nintegers t1,t2,⋯,tn where 0≤|ti|≤106 for 1≤i≤n.
The sum of n for all cases would not be larger than 5×106.
Output
The output contains exactly T lines.
For each test case, you should output the maximum value of at2i+btj.
Sample Input
2
3 2 1
1 2 3
5 -1 0
-3 -3 0 3 3
Sample Output
Case #1: 20
Case #2: 0
Source
2015 ACM/ICPC Asia Regional Shenyang Online
题意:在一个数组里找两个下标不一样的数,使at2i+btj最大,下标不一样,数值可能一样
#include
#include
#include
#include
#include
using namespace std;
const int maxn = *1e6+;
#define INF 0x3f3f3f3f
struct node
{
int x, id;
}P[maxn];
int cmp(node a, node b)
{
return abs(a.x) < abs(b.x);
}
int cmp1(node a, node b)
{
return a.x < b.x;
}
int main()
{
int t, n, a, b, l = ;
int A1, a1, ma, B1, b1, mb;
scanf("%d", &t);
long long sum, ans;
while(t--)
{
scanf("%d%d%d", &n, &a, &b);
for(int i = ; i < n; i++)
{
scanf("%d", &P[i].x);
P[i].id = i;
}
A1 = a1 = ma = B1 = b1 = mb = ;
sort(P, P+n, cmp);
if(a >= )
A1 = P[n-].x, a1 = P[n-].id, ma = P[n-].x;
else
A1 = P[].x, a1 = P[].id, ma = P[].x;
sort(P, P+n, cmp1);
if(b >= )
B1 = P[n-].x, b1 = P[n-].id, mb = P[n-].x;
else
B1 = P[].x, b1 = P[].id, mb = P[].x;
if(a1 != b1)
{
sum = (long long)a * A1 *A1;
sum += (long long)b * B1;
}
else
{
sum = (long long)a \* A1\*A1;
sum += (long long)b\*mb; // 为什么非得这么加,这么强制转换,orWA
ans = (long long)a\*ma\*ma;
ans += (long long)b\*B1;
sum = sum > ans ? sum : ans;
}
printf("Case #%d: %I64d\\n",l++, sum);
}
return ;
}
手机扫一扫
移动阅读更方便
你可能感兴趣的文章