[CF1536F] Omkar and Akmar(博弈论?组合数学)
阅读原文时间:2023年07月10日阅读:4

题面

[CF1536F] Omkar and Akmar

甲乙轮流在一个有

N

N

N 个位置的环上放字母(环上每个位置不同),每次可以放一个 AB ,要求不能有相同的字母相邻,轮到某个人时不能走了,另一个人就获胜。问在两个人都绝对聪明的情况下,有多少种不同的游戏进程

答案对

1

0

9

+

7

10^9+7

109+7 取模,

2

N

1

0

6

2\leq N\leq 10^6

2≤N≤106。

样例输入2
样例输出4

题解

很不幸,我们做过原题,幸运的是,我忘了。

不难推出一个结论:后手必胜(

2

N

2\leq N

2≤N)。原因是,最终不能走的时候,场上 AB 的总数一定是偶数(反证法易证),意味着最后一个走的是后手。

而且这个结论强大的地方在于,不论你怎么走,只要最后必须无子可放,那么后手想输都输不了。

接下来,游戏进程就可以不用考虑博弈论的问题了。

我们枚举最终有多少个字母,然后剩余的空白就填入 AB 之间,再确定哪些是甲走的哪些是乙走的,最后确定每个人放的字母的相对顺序,那么最终答案就是

i

=

1

n

/

2

(

(

2

i

n

2

i

)

+

(

2

i

1

n

2

i

1

)

)

2

(

2

i

i

)

(

i

!

)

2

\sum_{i=1}^{n/2}\Bigg( {2i\choose n-2i}+{2i-1\choose n-2i-1} \Bigg)\cdot2\cdot{2i\choose i}\cdot (i!)^2

i=1∑n/2​((n−2i2i​)+(n−2i−12i−1​))⋅2⋅(i2i​)⋅(i!)2

中间乘 2 是因为 ABAB...BABA... 都有可能。

CODE

#include<cstdio>
#include<vector>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 1000005
#define DB double
#define LL long long
#define ENDL putchar('\n')
#define lowbit(x) ((-x) & (x))
#define INF 0x3f3f3f3f
LL read() {
    LL f=1,x=0;char s = getchar();
    while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
    while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
    return f * x;
}
const int MOD = 1000000007;
int n,m,i,j,s,o,k;
int fac[MAXN],inv[MAXN],invf[MAXN];
int C(int n,int m) {
    if(m < 0 || m > n) return 0;
    return fac[n] *1ll* invf[m] % MOD *1ll* invf[n-m] % MOD;
}
int main() {
    n = read();
    fac[0] = fac[1] = inv[0] = inv[1] = invf[0] = invf[1] = 1;
    for(int i = 2;i <= n;i ++) {
        fac[i] = fac[i-1] *1ll* i % MOD;
        inv[i] = (MOD-inv[MOD%i]) *1ll* (MOD/i) % MOD;
        invf[i] = invf[i-1] *1ll* inv[i] % MOD;
    }
    int ans = 0,po = 1;
    for(int i = 2;i <= n;i += 2) {
        po = po *4ll % MOD;
        int as = 0;
        (as += C(i,n-i) *2ll % MOD) %= MOD;
        (as += C(i-1,n-i-1) *2ll % MOD) %= MOD;
        (ans += as *1ll* C(i,i/2) % MOD *1ll* fac[i/2] % MOD *1ll* fac[i/2] % MOD) %= MOD;
    }
    printf("%d\n",ans);
    return 0;
}

手机扫一扫

移动阅读更方便

阿里云服务器
腾讯云服务器
七牛云服务器

你可能感兴趣的文章