Assume that we can generate \(U_1, . . . , U_n \sim Uniform (0, 1)\), and define \(\hat \theta_n = \frac{1}{n} \sum_{i=1}^{n} g(U_i)\)
By law of large numbers, if \(\int_{0}^{1}|g(u)|du < \infty\), we have \(\hat \theta_n \rightarrow \theta := \mathbb{E}g(U) = \int_0^1 g(u)du \quad a.s. \quad n \rightarrow \infty\)
a.s. means almost surely:the set of possible exceptions may be non-empty, but it has probability 0.
Eg. Calculate \(\theta = \int_0^1 x^2 dx\)
n <- 100
set.seed(1)
x <- runif(n)
theta.hat <- mean(x^2)
theta.hat
求:\(\theta = \int_a^{b} g(t) dt\)
利用\(\int_a^bg(t)dt = (b-a)\int_a^b g(t)\frac{1}{b-a}dt = (b-a)\mathbb{E}g(Y)\), where Y~ Uniform(a,b)
所以我们可以:
Eg. Calculate \(\theta = \int_1^4 x^2dx\)
n <- 100
set.seed(1)
x <- runif(n, min = 1, max = 4)
theta.hat <- (4 - 1) * mean(x^2)
theta.hat
\[\Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}}e^\frac{-t^2}{2}dt
\]
Note that $$\Phi(x) = \mathbb{P}(Z \le x) = \mathbb{E}[I_{Z \le x}], \text{where } Z \sim N(0,1)$$
Therefore, we can estimate
\[\widehat{\Phi(x)}=\frac{1}{n} \sum_{i=1}^n \mathbb{I}\left(Z_i \leq x\right)=\frac{\#\left\{i: Z_i \leq x\right\}}{n}
\]
事件发生的概率等于它的示性函数的期望。
Eg. Calculate \(\Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}}e^\frac{t^2}{2}dt\) (1) when x = 0.3. (2) when \(x = (x_1, …, x_T)\)
#(1)
x <- 0.3
n <- 100
set.seed(1)
z <- rnorm(n)
mean(z < x) # estimate
pnorm(x) # true value by pnorm()
#(2)
Phi.hat <- function(x, n = 1000){
z <- rnorm(n)
return(mean(z < x))
}
x <- seq(0, 2.5, len = 5)
Phi.hat(x) #但是这样有问题,输出只有一个值
##原因是当向量和数进行比较的时候,向量的每一个元素会分别跟数比较;而向量和向量比较时,是对应元素进行比较。Be Careful!
round(pnorm(x), digits = 3) # true value
#(2)解决方法
probab <- numeric(5)
for(i in 1:5){
probab[i] <- Phi.hat(x[i])
}
probab
Calculate \(\theta = \int_A g(x)f(x) dx\)
Eg. Calculate \(\int_0^{\infty} \frac{e^{-x}}{1+x^2}dx\)
可以把\(e^{-x}\)视作均值为1的指数分布的密度函数,由此可以生成X。
Let\(\xi_1,\xi_2…\) be a sequence of i.i.d. random variables with finite expected value,by \(\mu\). Let
\[\bar{\xi}_n=\frac{1}{n} \sum_{i=1}^n \xi_i .
\]
Then,
\[\bar{\xi}_n \stackrel{P}{\rightarrow} \mu \text { as } n \rightarrow \infty .
\]
\[\bar{\xi}_n \stackrel{\text { a.s. }}{\longrightarrow} \mu \text { as } n \rightarrow \infty .
\]
Definition (Convergence in probability)
\[\lim _{n \rightarrow \infty} P\left(\left\{\omega \in \Omega:\left|\bar{\xi}_n(\omega)-\mu\right|>\varepsilon\right\}\right)=0 .
\]
\[\bar{\xi}_n \stackrel{P}{\longrightarrow} \mu .
\]
证明见老师ppt。
M <- 100000
n <- 100
eps <- 0.1
xi.bar <- numeric(M) # xi.bar[i] will record the sample mean of trial i
for (i in 1:M){
set.seed(i)
xi.vec <- sample(1:6, size = n, replace = TRUE)
xi.bar[i] <- mean(xi.vec)
}
mu <- 3.5
mean(abs(xi.bar - mu) > eps)
注意这里只跟n有关,m是试验数量。
如何从
估计这种积分形式的标准差。
如果能用数值解,就用数值解法。不知道分布的时候,可以用MC来估计。
\[\theta = \int_{-\infty}^{\infty} g(x)f(x)dx
\]
where \(f(x)\)is a p.d.f.
\[\hat \theta_n = \frac{1}{n}\sum_{i = 1}^ng(X_i)
\]
, where \(X_i \sim f(x)\)
\[\mathbb{E}[\hat\theta_n] = \theta
\]
现求\(Var(\hat\theta_n)\)
standard error:标准误差
\[\operatorname{Var}\left(\hat{\theta}_n\right)=\frac{\sigma^2}{n}=:(\text { standard error of } \hat{\theta})^2=\left(\operatorname{se}\left(\hat{\theta}_n\right)\right)^2,
\]
where
\[\sigma^2=\operatorname{Var}(g(X))=\int_{-\infty}^{\infty}(g(x)-\theta)^2 f(x) d x .
\]
\[\hat{\sigma}_n^2=\frac{1}{n-1} \sum_{i=1}^n\left(g\left(X_i\right)-\hat{\theta}_n\right)^2 .
\]
\[\widehat{\operatorname{se}}\left(\hat{\theta}_n\right)^2:=\frac{\hat{\sigma}_n^2}{n}=\frac{1}{n(n-1)} \sum_{i=1}^n\left(g\left(X_i\right)-\hat{\theta}_n\right)^2 .
\]
f(x) 是自己取的,{\(X_i\)}是根据f(x)生成的。n是MC取的样本数。
由前面的内容,
\[\hat{\theta}_n=\frac{1}{n} \sum_{i=1}^n g\left(X_i\right) .
\]
Eg. Calculate \(\int_0^1 xdx\)
Choose f(x)=1, then g(x) = x, 然后可以代入公式计算。
重复生成如10000次\(\hat \theta_n\)(每一次都要投100次骰子,总的会投很多很多次骰子), 当n足够大时,$$P(\frac{\theta_n-\theta}{\sigma/\sqrt{n}}) \rightarrow \Phi(x)$$
Eg. Variance of Dice Rolling
sigma <- sqrt(35/12)
xi.bar.standardized <- (xi.bar - mu)/(sigma/sqrt(n))
hist(xi.bar.standardized, probability = TRUE)
By CLT(Central Limit Theorem) $$ P(-1.96 \le \frac{\hat \theta_n - \theta}{\sigma/\sqrt{n}}) \le 1.96 \sim 0.95 $$, So,$$ \hat{\theta}_n \in\left[\theta-1.96 \times \frac{\sigma^{\prime}}{\sqrt{n}}, \theta+1.96 \times \frac{\sigma}{\sqrt{n}}\right] . $$
但是\(\sigma\)不一定知道,可以用估计值代替,于是就有了t-分布。
\[\frac{\hat{\theta}_n-\theta}{\hat{\sigma}_n / \sqrt{n}}=\frac{\hat{\theta}_n-\theta}{\hat{\operatorname{se}}\left(\hat{\theta}_n\right)} \Longrightarrow t_{n-1} .
\]
So, by limit distribution,
\[P\left(\theta-t_{0.025}(n-1) \frac{\hat{\sigma}_n}{\sqrt{n}} \leq \hat{\theta}_n \leq t_{0.025}(n-1) \frac{\hat{\sigma}_n}{\sqrt{n}}\right) \approx 0.05
\]
Eg. Dice Rolling
# student's t-distribution
M <- 100
xi.student <- numeric(M)
for (i in 1:M){
set.seed(i)
xi.vec <- sample(1:6, size = n, replace = TRUE)
xi.student[i] <- (mean(xi.vec) - 3.5) / (sd(xi.vec) / sqrt(n))
}
Note在n越来越大的时候,t分布会和normal越来越像。
M<-100
n<-200
u<-runif(n)
set.seed(1)
g <- numeric(M)
for (i in 1:M){
g[i]<-sin(u[i])^4*exp(-u[i])
theta<-g[i]
}
theta<-theta/M
theta
Definition (Efficiency)
Let \(\hat{\theta}_1\) and \(\hat{\theta}_2\) be two estimators of \(\theta\). We say \(\hat{\theta}_1\) is more efficient (in a statistical sense) than \(\hat{\theta}_2\) if
\[\frac{\operatorname{Var}\left(\hat{\theta}_1\right)}{\operatorname{Var}\left(\hat{\theta}_2\right)}<1
\]
Remark.
If the variances of estimators \(\hat{\theta}_1\) and \(\hat{\theta}_2\) are unknown, we can estimate efficiency by substituting a sample estimate of the variance for each estimator.
如果自己生成两个负相关的变量,然后就可以生成一个variance更小的变量。
\[\hat{\theta}_{1,2}=\frac{1}{2}\left(\hat{\theta}_1+\hat{\theta}_2\right)
\]
to estimate \(\theta\).
\[\operatorname{Var}\left(\hat{\theta}_{1,2}\right)=\operatorname{Var}\left(\frac{\hat{\theta}_1+\hat{\theta}_2}{2}\right)=\frac{1}{4}\left(\operatorname{Var}\left(\hat{\theta}_1\right)+\operatorname{Var}\left(\hat{\theta}_2\right)+2 \operatorname{Cov}\left(\hat{\theta}_1, \hat{\theta}_2\right)\right) \text {. }
\]
\[\operatorname{Cov}\left(\hat{\theta}_1, \hat{\theta}_2\right)<0 \text {, }
\]
and hence,
\[\operatorname{Var}\left(\hat{\theta}_{1,2}\right) \leq \frac{1}{4}\left(\operatorname{Var}\left(\hat{\theta}_1\right)+\operatorname{Var}\left(\hat{\theta}_2\right)\right)
\]
想要构造\(\hat\theta_1, \hat\theta_2\)
使得他们负相关。下面构造的\(X_i\)和\(\tilde X_i\)就是负相关的。
If $$ \hat{\theta}1=\frac{1}{n} \sum^n g\left(X_i\right) $$
where
\[X_i \sim F_X(x)
\]
\[X_i=F^{-1}\left(U_i\right) \stackrel{d}{=} \tilde{X}_i=F^{-1}\left(1-U_i\right) .
\]
\[\operatorname{Cov}\left(g\left(X_i\right), g\left(\tilde{X}_i\right)\right) \leq 0
\]
\[\hat{\theta}_2=\frac{1}{n} \sum_{i=1}^n g\left(\tilde{X}_i\right)
\]
is also an estimator of \(\theta\)
Eg.\(\int_0^1x^2dx\)
u<-runif(100)
theta1 <-mean(u^2)
theta2<-mean((1-u)^2)
theta<-mean(theta1,theta2)
theta
Eg. Normal distribution function
x <- 1
pnorm(1)
n <- 100
V <- runif(100, 0, 1)
V.tilde <- 1 - V
theta1 <- mean(exp(-V^2/2)*(1/sqrt(2*pi)))
theta2 <- mean(exp(-V.tilde^2/2)*(1/sqrt(2*pi)))
theta <- mean(theta1, theta2)
theta
控制方差的程度和g(x)有关,也就是和f(x)的选择有关,好的时候能控制到90%以下
\[\hat{\theta}^*=\frac{1}{n} \sum_{i=1}^n g\left(X_i\right)+\hat{c}^* \cdot \frac{1}{n} \sum_{i=1}^n\left(f\left(X_i\right)-\mu\right),
\]
where
\[\hat{c}^*=-\frac{\text { sample covariance }}{\text { sample variance }} \text {. }
\]
Eg. \(\theta = \int_0^1 e^u du\)
u <- runif(100)
gu <- exp(u)
theta.hat <- mean(gu)
fu <- u
mu <- 1/2
sample.cov <- cov(gu,fu)
sample.var <- var(fu)
c.star <- -sample.cov / sample.var
theta.star <- mean(gu) + c.star*mean(fu-1/2)
print(theta.hat)
print(theta.star)
这里取f(u)=u
手机扫一扫
移动阅读更方便
你可能感兴趣的文章