-1.#IND000 &&图像类型转换
阅读原文时间:2023年07月16日阅读:13

(1):float acos(float x) 参数x的范围为-1.0f到1.0f之间,返回值范围在0.0f到3.141592653f之间,值得注意的是:当x超出[-1.0f,1.0f]这个范围时此函数将返回一个-1.#IND000值,代表无穷小而编译器会不给出任何提示,通常此将会导致程序错误或崩溃,所以以后要注意数学函数的参数范围了.

可以通过以下代码进行调试:

float test = acos(1.0001f)

 if (test != test) {

      cout << "错误出现" << endl;

 }

昨天遇到的-1.#IND000,无穷小。但是我想用if(a==-1.#IND000)去判断,编译不过,呵呵。

现在找到方法了  ,不过方法有点怪,astone指出,b!=b应该是恒为false,但在这个情况下竟然是true

float a=10;

 float b=a/0;

 if( b > 0.0f ||b != b)

  printf("%f",b);

这个可以判断1.#INF000

float a=-10;

 float b=a/0;

 if( b < 0.0f ||b != b)

  printf("%f",b);

这个可以判断-1.#IND000

加b!=b只用于.net 2003,在vC++6.0下不用。

使用类似于pow,exp等等函数时常会产生一个无效数字1.#IND00,在VC下可以通过与一个确定数字比较大小来判断是否产生了无效数字,但这个方法在DEV-CPP下却是行不通的。

其实解决办法很简单,使用  float.h中一个函数_isnan即可:

int _isnan(double x);  

  

当x是一个无效值(NaN, Not a Number) 时,返回非零值;否则返回0.

一般可能是除数为零,使用数组时也经常出现这种情况

转自:http://blog.sina.com.cn/s/blog_3e6817300100a74d.html

(2):图像类型转换:http://blog.csdn.net/wuxiaoyao12/article/details/7305848

一、Mat类型:矩阵类型,Matrix。

在openCV中,Mat是一个多维的密集数据数组。可以用来处理向量和矩阵、图像、直方图等等常见的多维数据。

Mat有3个重要的方法:

1、Mat mat = imread(const String* filename);            读取图像

2、imshow(const string frameName, InputArray mat);      显示图像

3、imwrite (const string& filename, InputArray img);    储存图像

Mat类型较CvMat与IplImage类型来说,有更强的矩阵运算能力,支持常见的矩阵运算。在计算密集型的应用当中,将CvMat与IplImage类型转化为Mat类型将大大减少计算时间花费。

A.Mat -> IplImage

同样只是创建图像头,而没有复制数据。

例: // 假设Mat类型的imgMat图像数据存在

IplImage pImg= IplImage(imgMat);

B.Mat -> CvMat

与IplImage的转换类似,不复制数据,只创建矩阵头。

例: // 假设Mat类型的imgMat图像数据存在

CvMat cvMat = imgMat;

二、CvMat类型与IplImage类型:“图像”类型

在openCV中,Mat类型与CvMat和IplImage类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化。而CvMat和IplImage类型更侧重于“图像”,openCV对其中的图像操作(缩放、单通道提取、图像阈值操作等)进行了优化。

_补充:_IplImage由CvMat派生,而CvMat由CvArr派生即CvArr -> CvMat -> IplImage

CvArr用作函数的参数,无论传入的是CvMat或IplImage,内部都是按CvMat处理。

1.CvMat

A.CvMat-> IplImage

IplImage* img = cvCreateImage(cvGetSize(mat),8,1);

cvGetImage(matI,img);

cvSaveImage("rice1.bmp",img);

B.CvMat->Mat

与IplImage的转换类似,可以选择是否复制数据。

Mat::Mat(const CvMat* m, bool copyData=false);

在openCV中,没有向量(vector)的数据结构。任何时候,但我们要表示向量时,用矩阵数据表示即可。

但是,CvMat类型与我们在线性代数课程上学的向量概念相比,更抽象,比如CvMat的元素数据类型并不仅限于基础数据类型,比如,下面创建一个二维数据矩阵:

CvMat* cvCreatMat(int rows ,int cols , int type);

这里的type可以是任意的预定义数据类型,比如RGB或者别的多通道数据。这样我们便可以在一个CvMat矩阵上表示丰富多彩的图像了。

2.IplImage

在类型关系上,我们可以说IplImage类型继承自CvMat类型,当然还包括其他的变量将之解析成图像数据。

IplImage类型较之CvMat多了很多参数,比如depth和nChannels。在普通的矩阵类型当中,通常深度和通道数被同时表示,如用32位表示RGB+Alpha.但是,在图像处理中,我们往往将深度与通道数分开处理,这样做是OpenCV对图像表示的一种优化方案。

IplImage的对图像的另一种优化是变量origin----原点。在计算机视觉处理上,一个重要的不便是对原点的定义不清楚,图像来源,编码格式,甚至操作系统都会对原地的选取产生影响。为了弥补这一点,openCV允许用户定义自己的原点设置。取值0表示原点位于图片左上角,1表示左下角。

dataOrder参数定义数据的格式。有IPL_DATA_ORDER_PIXEL和IPL_DATA_ORDER_PLANE两种取值,前者便是对于像素,不同的通道的数据交叉排列,后者表示所有通道按顺序平行排列。

IplImage类型的所有额外变量都是对“图像”的表示与计算能力的优化。

A.IplImage -> Mat

IplImage* pImg = cvLoadImage("lena.jpg");

Mat img(pImg,0); // 0是不複製影像,也就是pImg與img的data共用同個記憶體位置,header各自有
B.IplImage -> CvMat

法1:CvMat mathdr, *mat = cvGetMat( img, &mathdr );

法2:CvMat *mat = cvCreateMat( img->height, img->width, CV_64FC3 );

  cvConvert( img, mat );

C.IplImage*-> BYTE*

BYTE* data= img->imageData;

CvMat和IplImage创建时的一个小区别:

1、建立矩阵时,第一个参数为行数,第二个参数为列数。

CvMat* cvCreateMat( int rows, int cols, int type );

2、建立图像时,CvSize第一个参数为宽度,即列数;第二个参数为高度,即行数。这 个和CvMat矩阵正好相反。

IplImage* cvCreateImage(CvSize size, int depth, int channels );

CvSize cvSize( int width, int height );

IplImage内部buffer每行是按4字节对齐的,CvMat没有这个限制

补充:

A.BYTE*-> IplImage*

img= cvCreateImageHeader(cvSize(width,height),depth,channels);

cvSetData(img,data,step);

//首先由cvCreateImageHeader()创建IplImage图像头,制定图像的尺寸,深度和通道数;

//然后由cvSetData()根据BYTE*图像数据指针设置IplImage图像头的数据数据,

//其中step指定该IplImage图像每行占的字节数,对于1通道的IPL_DEPTH_8U图像,step可以等于width。

手机扫一扫

移动阅读更方便

阿里云服务器
腾讯云服务器
七牛云服务器

你可能感兴趣的文章