Spark支持两种RDD操作:transformation和action。transformation操作会针对已有的RDD创建一个新的RDD;
而action则主要是对RDD进行最后的操作,比如遍历、reduce、保存到文件等,并可以返回结果给Driver程序。
例如,map就是一种transformation操作,它用于将已有RDD的每个元素传入一个自定义的函数,并获取一个新的元素,然后将所有的新元素组成一个新的RDD。
而reduce就是一种action操作,它用于对RDD中的所有元素进行聚合操作,并获取一个最终的结果,然后返回给Driver程序。
transformation的特点就是lazy特性。lazy特性指的是,如果一个spark应用中只定义了transformation操作,那么即使你执行该应用,
这些操作也不会执行。也就是说,transformation是不会触发spark程序的执行的,它们只是记录了对RDD所做的操作,但是不会自发的执行。
只有当transformation之后,接着执行了一个action操作,那么所有的transformation才会执行。Spark通过这种lazy特性,来进行底层的spark应用执行的优化,避免产生过多中间结果。
action操作执行,会触发一个spark job的运行,从而触发这个action之前所有的transformation的执行。这是action的特性。
常用transformation介绍
1、map:将集合中每个元素乘以2
2、filter:过滤出集合中的偶数
3、flatMap:将行拆分为单词
4、groupByKey:将每个班级的成绩进行分组
5、reduceByKey:统计每个班级的总分
6、sortByKey:将学生分数进行排序
7、join:打印每个学生的成绩
8、cogroup:打印每个学生的成绩
map:将集合中每个元素乘以2
新建TransforDemo类
package com.it19gong.sparkproject;
import java.util.Arrays;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
public class TransforDemo {
public static void main(String\[\] args) {
map();
}
private static void map() {
//创建SparkConf
SparkConf conf = new SparkConf().setAppName("map").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构建集合
List numbers = Arrays.asList(,,,,);
//并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
// 使用map算子,将集合中的每个元素都乘以2
// map算子,是对任何类型的RDD,都可以调用的
// 在java中,map算子接收的参数是Function对象
// 创建的Function对象,一定会让你设置第二个泛型参数,这个泛型类型,就是返回的新元素的类型
// 同时call()方法的返回类型,也必须与第二个泛型类型同步
// 在call()方法内部,就可以对原始RDD中的每一个元素进行各种处理和计算,并返回一个新的元素
// 所有新的元素就会组成一个新的RDD
// 所有新的元素就会组成一个新的RDD
JavaRDD<Integer> multipleNumberRDD = numberRDD.map(new Function<Integer, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Integer call(Integer v1) throws Exception {
return v1 \* ;
}
});
multipleNumberRDD.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
}
}
运行代码
添加filter()方法
package com.it19gong.sparkproject;
import java.util.Arrays;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
public class TransforDemo {
public static void main(String\[\] args) {
//map();
filter();
}
private static void filter() {
// 创建SparkConf
SparkConf conf = new SparkConf().setAppName("filter").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Integer> numbers = Arrays.asList(, , , , , , , , , );
// 并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
// 对初始RDD执行filter算子,过滤出其中的偶数
// filter算子,传入的也是Function,其他的使用注意点,实际上和map是一样的
// 但是,唯一的不同,就是call()方法的返回类型是Boolean
// 每一个初始RDD中的元素,都会传入call()方法,此时你可以执行各种自定义的计算逻辑
// 来判断这个元素是否是你想要的
// 如果你想在新的RDD中保留这个元素,那么就返回true;否则,不想保留这个元素,返回false
JavaRDD<Integer> evenNumberRDD = numberRDD.filter(
new Function<Integer, Boolean>() {
private static final long serialVersionUID = 1L;
// 在这里,1到10,都会传入进来
// 但是根据我们的逻辑,只有2,4,6,8,10这几个偶数,会返回true
// 所以,只有偶数会保留下来,放在新的RDD中
@Override
public Boolean call(Integer v1) throws Exception {
return v1 % == ;
}
});
// 打印新的RDD
evenNumberRDD.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void map() {
//创建SparkConf
SparkConf conf = new SparkConf().setAppName("map").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构建集合
List numbers = Arrays.asList(,,,,);
//并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
// 使用map算子,将集合中的每个元素都乘以2
// map算子,是对任何类型的RDD,都可以调用的
// 在java中,map算子接收的参数是Function对象
// 创建的Function对象,一定会让你设置第二个泛型参数,这个泛型类型,就是返回的新元素的类型
// 同时call()方法的返回类型,也必须与第二个泛型类型同步
// 在call()方法内部,就可以对原始RDD中的每一个元素进行各种处理和计算,并返回一个新的元素
// 所有新的元素就会组成一个新的RDD
// 所有新的元素就会组成一个新的RDD
JavaRDD<Integer> multipleNumberRDD = numberRDD.map(new Function<Integer, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Integer call(Integer v1) throws Exception {
return v1 \* ;
}
});
multipleNumberRDD.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
}
}
运行filter()
flatMap案例
flatMap案例:将文本行拆分为多个单词
package com.it19gong.sparkproject;
import java.util.Arrays;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
public class TransforDemo {
public static void main(String\[\] args) {
//map();
//filter();
flatMap() ;
}
private static void flatMap() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("flatMap")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 构造集合
List<String> lineList = Arrays.asList("hello you", "hello me", "hello world");
// 并行化集合,创建RDD
JavaRDD<String> lines = sc.parallelize(lineList);
// 对RDD执行flatMap算子,将每一行文本,拆分为多个单词
// flatMap算子,在java中,接收的参数是FlatMapFunction
// 我们需要自己定义FlatMapFunction的第二个泛型类型,即,代表了返回的新元素的类型
// call()方法,返回的类型,不是U,而是Iterable<U>,这里的U也与第二个泛型类型相同
// flatMap其实就是,接收原始RDD中的每个元素,并进行各种逻辑的计算和处理,可以返回多个元素
// 多个元素,即封装在Iterable集合中,可以使用ArrayList等集合
// 新的RDD中,即封装了所有的新元素;也就是说,新的RDD的大小一定是 >= 原始RDD的大小
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
private static final long serialVersionUID = 1L;
// 在这里会,比如,传入第一行,hello you
// 返回的是一个Iterable<String>(hello, you)
@Override
public Iterable<String> call(String t) throws Exception {
return Arrays.asList(t.split(" "));
}
});
// 打印新的RDD
words.foreach(new VoidFunction<String>() {
private static final long serialVersionUID = 1L;
@Override
public void call(String t) throws Exception {
System.out.println(t);
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void filter() {
// 创建SparkConf
SparkConf conf = new SparkConf().setAppName("filter").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Integer> numbers = Arrays.asList(, , , , , , , , , );
// 并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
// 对初始RDD执行filter算子,过滤出其中的偶数
// filter算子,传入的也是Function,其他的使用注意点,实际上和map是一样的
// 但是,唯一的不同,就是call()方法的返回类型是Boolean
// 每一个初始RDD中的元素,都会传入call()方法,此时你可以执行各种自定义的计算逻辑
// 来判断这个元素是否是你想要的
// 如果你想在新的RDD中保留这个元素,那么就返回true;否则,不想保留这个元素,返回false
JavaRDD<Integer> evenNumberRDD = numberRDD.filter(
new Function<Integer, Boolean>() {
private static final long serialVersionUID = 1L;
// 在这里,1到10,都会传入进来
// 但是根据我们的逻辑,只有2,4,6,8,10这几个偶数,会返回true
// 所以,只有偶数会保留下来,放在新的RDD中
@Override
public Boolean call(Integer v1) throws Exception {
return v1 % == ;
}
});
// 打印新的RDD
evenNumberRDD.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void map() {
//创建SparkConf
SparkConf conf = new SparkConf().setAppName("map").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构建集合
List numbers = Arrays.asList(,,,,);
//并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
// 使用map算子,将集合中的每个元素都乘以2
// map算子,是对任何类型的RDD,都可以调用的
// 在java中,map算子接收的参数是Function对象
// 创建的Function对象,一定会让你设置第二个泛型参数,这个泛型类型,就是返回的新元素的类型
// 同时call()方法的返回类型,也必须与第二个泛型类型同步
// 在call()方法内部,就可以对原始RDD中的每一个元素进行各种处理和计算,并返回一个新的元素
// 所有新的元素就会组成一个新的RDD
// 所有新的元素就会组成一个新的RDD
JavaRDD<Integer> multipleNumberRDD = numberRDD.map(new Function<Integer, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Integer call(Integer v1) throws Exception {
return v1 \* ;
}
});
multipleNumberRDD.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
}
}
运行代码
将每个班级的成绩进行分组
package com.it19gong.sparkproject;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;
public class TransforDemo {
public static void main(String\[\] args) {
//map();
//filter();
//flatMap() ;
groupByKey();
}
private static void groupByKey() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("groupByKey")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<String, Integer>> scoreList = Arrays.asList(
new Tuple2<String, Integer>("class1", ),
new Tuple2<String, Integer>("class2", ),
new Tuple2<String, Integer>("class1", ),
new Tuple2<String, Integer>("class2", ));
// 并行化集合,创建JavaPairRDD
JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList);
// 针对scores RDD,执行groupByKey算子,对每个班级的成绩进行分组
// groupByKey算子,返回的还是JavaPairRDD
// 但是,JavaPairRDD的第一个泛型类型不变,第二个泛型类型变成Iterable这种集合类型
// 也就是说,按照了key进行分组,那么每个key可能都会有多个value,此时多个value聚合成了Iterable
// 那么接下来,我们是不是就可以通过groupedScores这种JavaPairRDD,很方便地处理某个分组内的数据
JavaPairRDD<String, Iterable<Integer>> groupedScores = scores.groupByKey();
// 打印groupedScores RDD
groupedScores.foreach(new VoidFunction<Tuple2<String,Iterable<Integer>>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<String, Iterable<Integer>> t)
throws Exception {
System.out.println("class: " + t.\_1);
Iterator<Integer> ite = t.\_2.iterator();
while(ite.hasNext()) {
System.out.println(ite.next());
}
System.out.println("==============================");
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void flatMap() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("flatMap")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 构造集合
List<String> lineList = Arrays.asList("hello you", "hello me", "hello world");
// 并行化集合,创建RDD
JavaRDD<String> lines = sc.parallelize(lineList);
// 对RDD执行flatMap算子,将每一行文本,拆分为多个单词
// flatMap算子,在java中,接收的参数是FlatMapFunction
// 我们需要自己定义FlatMapFunction的第二个泛型类型,即,代表了返回的新元素的类型
// call()方法,返回的类型,不是U,而是Iterable<U>,这里的U也与第二个泛型类型相同
// flatMap其实就是,接收原始RDD中的每个元素,并进行各种逻辑的计算和处理,可以返回多个元素
// 多个元素,即封装在Iterable集合中,可以使用ArrayList等集合
// 新的RDD中,即封装了所有的新元素;也就是说,新的RDD的大小一定是 >= 原始RDD的大小
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
private static final long serialVersionUID = 1L;
// 在这里会,比如,传入第一行,hello you
// 返回的是一个Iterable<String>(hello, you)
@Override
public Iterable<String> call(String t) throws Exception {
return Arrays.asList(t.split(" "));
}
});
// 打印新的RDD
words.foreach(new VoidFunction<String>() {
private static final long serialVersionUID = 1L;
@Override
public void call(String t) throws Exception {
System.out.println(t);
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void filter() {
// 创建SparkConf
SparkConf conf = new SparkConf().setAppName("filter").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Integer> numbers = Arrays.asList(, , , , , , , , , );
// 并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
// 对初始RDD执行filter算子,过滤出其中的偶数
// filter算子,传入的也是Function,其他的使用注意点,实际上和map是一样的
// 但是,唯一的不同,就是call()方法的返回类型是Boolean
// 每一个初始RDD中的元素,都会传入call()方法,此时你可以执行各种自定义的计算逻辑
// 来判断这个元素是否是你想要的
// 如果你想在新的RDD中保留这个元素,那么就返回true;否则,不想保留这个元素,返回false
JavaRDD<Integer> evenNumberRDD = numberRDD.filter(
new Function<Integer, Boolean>() {
private static final long serialVersionUID = 1L;
// 在这里,1到10,都会传入进来
// 但是根据我们的逻辑,只有2,4,6,8,10这几个偶数,会返回true
// 所以,只有偶数会保留下来,放在新的RDD中
@Override
public Boolean call(Integer v1) throws Exception {
return v1 % == ;
}
});
// 打印新的RDD
evenNumberRDD.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void map() {
//创建SparkConf
SparkConf conf = new SparkConf().setAppName("map").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构建集合
List numbers = Arrays.asList(,,,,);
//并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
// 使用map算子,将集合中的每个元素都乘以2
// map算子,是对任何类型的RDD,都可以调用的
// 在java中,map算子接收的参数是Function对象
// 创建的Function对象,一定会让你设置第二个泛型参数,这个泛型类型,就是返回的新元素的类型
// 同时call()方法的返回类型,也必须与第二个泛型类型同步
// 在call()方法内部,就可以对原始RDD中的每一个元素进行各种处理和计算,并返回一个新的元素
// 所有新的元素就会组成一个新的RDD
// 所有新的元素就会组成一个新的RDD
JavaRDD<Integer> multipleNumberRDD = numberRDD.map(new Function<Integer, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Integer call(Integer v1) throws Exception {
return v1 \* ;
}
});
multipleNumberRDD.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
}
}
运行代码
将学生分数进行排序
package com.it19gong.sparkproject;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;
public class TransforDemo {
public static void main(String\[\] args) {
//map();
//filter();
//flatMap() ;
// groupByKey();
sortByKey();
}
private static void sortByKey() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("sortByKey")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<Integer, String>> scoreList = Arrays.asList(
new Tuple2<Integer, String>(, "leo"),
new Tuple2<Integer, String>(, "tom"),
new Tuple2<Integer, String>(, "marry"),
new Tuple2<Integer, String>(, "jack"));
// 并行化集合,创建RDD
JavaPairRDD<Integer, String> scores = sc.parallelizePairs(scoreList);
// 对scores RDD执行sortByKey算子
// sortByKey其实就是根据key进行排序,可以手动指定升序,或者降序
// 返回的,还是JavaPairRDD,其中的元素内容,都是和原始的RDD一模一样的
// 但是就是RDD中的元素的顺序,不同了
JavaPairRDD<Integer, String> sortedScores = scores.sortByKey(false);
// 打印sortedScored RDD
sortedScores.foreach(new VoidFunction<Tuple2<Integer,String>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<Integer, String> t) throws Exception {
System.out.println(t.\_1 + ": " + t.\_2);
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void groupByKey() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("groupByKey")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<String, Integer>> scoreList = Arrays.asList(
new Tuple2<String, Integer>("class1", ),
new Tuple2<String, Integer>("class2", ),
new Tuple2<String, Integer>("class1", ),
new Tuple2<String, Integer>("class2", ));
// 并行化集合,创建JavaPairRDD
JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList);
// 针对scores RDD,执行groupByKey算子,对每个班级的成绩进行分组
// groupByKey算子,返回的还是JavaPairRDD
// 但是,JavaPairRDD的第一个泛型类型不变,第二个泛型类型变成Iterable这种集合类型
// 也就是说,按照了key进行分组,那么每个key可能都会有多个value,此时多个value聚合成了Iterable
// 那么接下来,我们是不是就可以通过groupedScores这种JavaPairRDD,很方便地处理某个分组内的数据
JavaPairRDD<String, Iterable<Integer>> groupedScores = scores.groupByKey();
// 打印groupedScores RDD
groupedScores.foreach(new VoidFunction<Tuple2<String,Iterable<Integer>>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<String, Iterable<Integer>> t)
throws Exception {
System.out.println("class: " + t.\_1);
Iterator<Integer> ite = t.\_2.iterator();
while(ite.hasNext()) {
System.out.println(ite.next());
}
System.out.println("==============================");
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void flatMap() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("flatMap")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 构造集合
List<String> lineList = Arrays.asList("hello you", "hello me", "hello world");
// 并行化集合,创建RDD
JavaRDD<String> lines = sc.parallelize(lineList);
// 对RDD执行flatMap算子,将每一行文本,拆分为多个单词
// flatMap算子,在java中,接收的参数是FlatMapFunction
// 我们需要自己定义FlatMapFunction的第二个泛型类型,即,代表了返回的新元素的类型
// call()方法,返回的类型,不是U,而是Iterable<U>,这里的U也与第二个泛型类型相同
// flatMap其实就是,接收原始RDD中的每个元素,并进行各种逻辑的计算和处理,可以返回多个元素
// 多个元素,即封装在Iterable集合中,可以使用ArrayList等集合
// 新的RDD中,即封装了所有的新元素;也就是说,新的RDD的大小一定是 >= 原始RDD的大小
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
private static final long serialVersionUID = 1L;
// 在这里会,比如,传入第一行,hello you
// 返回的是一个Iterable<String>(hello, you)
@Override
public Iterable<String> call(String t) throws Exception {
return Arrays.asList(t.split(" "));
}
});
// 打印新的RDD
words.foreach(new VoidFunction<String>() {
private static final long serialVersionUID = 1L;
@Override
public void call(String t) throws Exception {
System.out.println(t);
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void filter() {
// 创建SparkConf
SparkConf conf = new SparkConf().setAppName("filter").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Integer> numbers = Arrays.asList(, , , , , , , , , );
// 并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
// 对初始RDD执行filter算子,过滤出其中的偶数
// filter算子,传入的也是Function,其他的使用注意点,实际上和map是一样的
// 但是,唯一的不同,就是call()方法的返回类型是Boolean
// 每一个初始RDD中的元素,都会传入call()方法,此时你可以执行各种自定义的计算逻辑
// 来判断这个元素是否是你想要的
// 如果你想在新的RDD中保留这个元素,那么就返回true;否则,不想保留这个元素,返回false
JavaRDD<Integer> evenNumberRDD = numberRDD.filter(
new Function<Integer, Boolean>() {
private static final long serialVersionUID = 1L;
// 在这里,1到10,都会传入进来
// 但是根据我们的逻辑,只有2,4,6,8,10这几个偶数,会返回true
// 所以,只有偶数会保留下来,放在新的RDD中
@Override
public Boolean call(Integer v1) throws Exception {
return v1 % == ;
}
});
// 打印新的RDD
evenNumberRDD.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void map() {
//创建SparkConf
SparkConf conf = new SparkConf().setAppName("map").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构建集合
List numbers = Arrays.asList(,,,,);
//并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
// 使用map算子,将集合中的每个元素都乘以2
// map算子,是对任何类型的RDD,都可以调用的
// 在java中,map算子接收的参数是Function对象
// 创建的Function对象,一定会让你设置第二个泛型参数,这个泛型类型,就是返回的新元素的类型
// 同时call()方法的返回类型,也必须与第二个泛型类型同步
// 在call()方法内部,就可以对原始RDD中的每一个元素进行各种处理和计算,并返回一个新的元素
// 所有新的元素就会组成一个新的RDD
// 所有新的元素就会组成一个新的RDD
JavaRDD<Integer> multipleNumberRDD = numberRDD.map(new Function<Integer, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Integer call(Integer v1) throws Exception {
return v1 \* ;
}
});
multipleNumberRDD.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
}
}
运行代码
打印学生成绩
package com.it19gong.sparkproject;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;
public class TransforDemo {
public static void main(String\[\] args) {
//map();
//filter();
//flatMap() ;
// groupByKey();
//sortByKey();
join();
}
private static void join() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("join")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<Integer, String>> studentList = Arrays.asList(
new Tuple2<Integer, String>(, "leo"),
new Tuple2<Integer, String>(, "jack"),
new Tuple2<Integer, String>(, "tom"));
List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(
new Tuple2<Integer, Integer>(, ),
new Tuple2<Integer, Integer>(, ),
new Tuple2<Integer, Integer>(, ));
// 并行化两个RDD
JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList);
JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList);
// 使用join算子关联两个RDD
// join以后,还是会根据key进行join,并返回JavaPairRDD
// 但是JavaPairRDD的第一个泛型类型是之前两个JavaPairRDD的key的类型,因为是通过key进行join的
// 第二个泛型类型,是Tuple2<v1, v2>的类型,Tuple2的两个泛型分别为原始RDD的value的类型
// join,就返回的RDD的每一个元素,就是通过key join上的一个pair
// 什么意思呢?比如有(1, 1) (1, 2) (1, 3)的一个RDD
// 还有一个(1, 4) (2, 1) (2, 2)的一个RDD
// join以后,实际上会得到(1 (1, 4)) (1, (2, 4)) (1, (3, 4))
JavaPairRDD<Integer, Tuple2<String, Integer>> studentScores = students.join(scores);
// 打印studnetScores RDD
studentScores.foreach(
new VoidFunction<Tuple2<Integer,Tuple2<String,Integer>>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<Integer, Tuple2<String, Integer>> t)
throws Exception {
System.out.println("student id: " + t.\_1);
System.out.println("student name: " + t.\_2.\_1);
System.out.println("student score: " + t.\_2.\_2);
System.out.println("===============================");
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void sortByKey() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("sortByKey")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<Integer, String>> scoreList = Arrays.asList(
new Tuple2<Integer, String>(, "leo"),
new Tuple2<Integer, String>(, "tom"),
new Tuple2<Integer, String>(, "marry"),
new Tuple2<Integer, String>(, "jack"));
// 并行化集合,创建RDD
JavaPairRDD<Integer, String> scores = sc.parallelizePairs(scoreList);
// 对scores RDD执行sortByKey算子
// sortByKey其实就是根据key进行排序,可以手动指定升序,或者降序
// 返回的,还是JavaPairRDD,其中的元素内容,都是和原始的RDD一模一样的
// 但是就是RDD中的元素的顺序,不同了
JavaPairRDD<Integer, String> sortedScores = scores.sortByKey(false);
// 打印sortedScored RDD
sortedScores.foreach(new VoidFunction<Tuple2<Integer,String>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<Integer, String> t) throws Exception {
System.out.println(t.\_1 + ": " + t.\_2);
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void groupByKey() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("groupByKey")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<String, Integer>> scoreList = Arrays.asList(
new Tuple2<String, Integer>("class1", ),
new Tuple2<String, Integer>("class2", ),
new Tuple2<String, Integer>("class1", ),
new Tuple2<String, Integer>("class2", ));
// 并行化集合,创建JavaPairRDD
JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList);
// 针对scores RDD,执行groupByKey算子,对每个班级的成绩进行分组
// groupByKey算子,返回的还是JavaPairRDD
// 但是,JavaPairRDD的第一个泛型类型不变,第二个泛型类型变成Iterable这种集合类型
// 也就是说,按照了key进行分组,那么每个key可能都会有多个value,此时多个value聚合成了Iterable
// 那么接下来,我们是不是就可以通过groupedScores这种JavaPairRDD,很方便地处理某个分组内的数据
JavaPairRDD<String, Iterable<Integer>> groupedScores = scores.groupByKey();
// 打印groupedScores RDD
groupedScores.foreach(new VoidFunction<Tuple2<String,Iterable<Integer>>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<String, Iterable<Integer>> t)
throws Exception {
System.out.println("class: " + t.\_1);
Iterator<Integer> ite = t.\_2.iterator();
while(ite.hasNext()) {
System.out.println(ite.next());
}
System.out.println("==============================");
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void flatMap() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("flatMap")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 构造集合
List<String> lineList = Arrays.asList("hello you", "hello me", "hello world");
// 并行化集合,创建RDD
JavaRDD<String> lines = sc.parallelize(lineList);
// 对RDD执行flatMap算子,将每一行文本,拆分为多个单词
// flatMap算子,在java中,接收的参数是FlatMapFunction
// 我们需要自己定义FlatMapFunction的第二个泛型类型,即,代表了返回的新元素的类型
// call()方法,返回的类型,不是U,而是Iterable<U>,这里的U也与第二个泛型类型相同
// flatMap其实就是,接收原始RDD中的每个元素,并进行各种逻辑的计算和处理,可以返回多个元素
// 多个元素,即封装在Iterable集合中,可以使用ArrayList等集合
// 新的RDD中,即封装了所有的新元素;也就是说,新的RDD的大小一定是 >= 原始RDD的大小
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
private static final long serialVersionUID = 1L;
// 在这里会,比如,传入第一行,hello you
// 返回的是一个Iterable<String>(hello, you)
@Override
public Iterable<String> call(String t) throws Exception {
return Arrays.asList(t.split(" "));
}
});
// 打印新的RDD
words.foreach(new VoidFunction<String>() {
private static final long serialVersionUID = 1L;
@Override
public void call(String t) throws Exception {
System.out.println(t);
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void filter() {
// 创建SparkConf
SparkConf conf = new SparkConf().setAppName("filter").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Integer> numbers = Arrays.asList(, , , , , , , , , );
// 并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
// 对初始RDD执行filter算子,过滤出其中的偶数
// filter算子,传入的也是Function,其他的使用注意点,实际上和map是一样的
// 但是,唯一的不同,就是call()方法的返回类型是Boolean
// 每一个初始RDD中的元素,都会传入call()方法,此时你可以执行各种自定义的计算逻辑
// 来判断这个元素是否是你想要的
// 如果你想在新的RDD中保留这个元素,那么就返回true;否则,不想保留这个元素,返回false
JavaRDD<Integer> evenNumberRDD = numberRDD.filter(
new Function<Integer, Boolean>() {
private static final long serialVersionUID = 1L;
// 在这里,1到10,都会传入进来
// 但是根据我们的逻辑,只有2,4,6,8,10这几个偶数,会返回true
// 所以,只有偶数会保留下来,放在新的RDD中
@Override
public Boolean call(Integer v1) throws Exception {
return v1 % == ;
}
});
// 打印新的RDD
evenNumberRDD.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void map() {
//创建SparkConf
SparkConf conf = new SparkConf().setAppName("map").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构建集合
List numbers = Arrays.asList(,,,,);
//并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
// 使用map算子,将集合中的每个元素都乘以2
// map算子,是对任何类型的RDD,都可以调用的
// 在java中,map算子接收的参数是Function对象
// 创建的Function对象,一定会让你设置第二个泛型参数,这个泛型类型,就是返回的新元素的类型
// 同时call()方法的返回类型,也必须与第二个泛型类型同步
// 在call()方法内部,就可以对原始RDD中的每一个元素进行各种处理和计算,并返回一个新的元素
// 所有新的元素就会组成一个新的RDD
// 所有新的元素就会组成一个新的RDD
JavaRDD<Integer> multipleNumberRDD = numberRDD.map(new Function<Integer, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Integer call(Integer v1) throws Exception {
return v1 \* ;
}
});
multipleNumberRDD.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
}
}
运行代码
cogroup案例:打印学生成绩
package com.it19gong.sparkproject;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;
public class TransforDemo {
public static void main(String\[\] args) {
//map();
//filter();
//flatMap() ;
// groupByKey();
//sortByKey();
//join();
cogroup();
}
private static void cogroup() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("cogroup")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<Integer, String>> studentList = Arrays.asList(
new Tuple2<Integer, String>(, "leo"),
new Tuple2<Integer, String>(, "jack"),
new Tuple2<Integer, String>(, "tom"));
List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(
new Tuple2<Integer, Integer>(, ),
new Tuple2<Integer, Integer>(, ),
new Tuple2<Integer, Integer>(, ),
new Tuple2<Integer, Integer>(, ),
new Tuple2<Integer, Integer>(, ),
new Tuple2<Integer, Integer>(, ));
// 并行化两个RDD
JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList);
JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList);
// cogroup与join不同
// 相当于是,一个key join上的所有value,都给放到一个Iterable里面去了
// cogroup,不太好讲解,希望大家通过动手编写我们的案例,仔细体会其中的奥妙
JavaPairRDD<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> studentScores =
students.cogroup(scores);
// 打印studnetScores RDD
studentScores.foreach(
new VoidFunction<Tuple2<Integer,Tuple2<Iterable<String>,Iterable<Integer>>>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(
Tuple2<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> t)
throws Exception {
System.out.println("student id: " + t.\_1);
System.out.println("student name: " + t.\_2.\_1);
System.out.println("student score: " + t.\_2.\_2);
System.out.println("===============================");
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void join() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("join")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<Integer, String>> studentList = Arrays.asList(
new Tuple2<Integer, String>(, "leo"),
new Tuple2<Integer, String>(, "jack"),
new Tuple2<Integer, String>(, "tom"));
List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(
new Tuple2<Integer, Integer>(, ),
new Tuple2<Integer, Integer>(, ),
new Tuple2<Integer, Integer>(, ));
// 并行化两个RDD
JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList);
JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList);
// 使用join算子关联两个RDD
// join以后,还是会根据key进行join,并返回JavaPairRDD
// 但是JavaPairRDD的第一个泛型类型是之前两个JavaPairRDD的key的类型,因为是通过key进行join的
// 第二个泛型类型,是Tuple2<v1, v2>的类型,Tuple2的两个泛型分别为原始RDD的value的类型
// join,就返回的RDD的每一个元素,就是通过key join上的一个pair
// 什么意思呢?比如有(1, 1) (1, 2) (1, 3)的一个RDD
// 还有一个(1, 4) (2, 1) (2, 2)的一个RDD
// join以后,实际上会得到(1 (1, 4)) (1, (2, 4)) (1, (3, 4))
JavaPairRDD<Integer, Tuple2<String, Integer>> studentScores = students.join(scores);
// 打印studnetScores RDD
studentScores.foreach(
new VoidFunction<Tuple2<Integer,Tuple2<String,Integer>>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<Integer, Tuple2<String, Integer>> t)
throws Exception {
System.out.println("student id: " + t.\_1);
System.out.println("student name: " + t.\_2.\_1);
System.out.println("student score: " + t.\_2.\_2);
System.out.println("===============================");
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void sortByKey() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("sortByKey")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<Integer, String>> scoreList = Arrays.asList(
new Tuple2<Integer, String>(, "leo"),
new Tuple2<Integer, String>(, "tom"),
new Tuple2<Integer, String>(, "marry"),
new Tuple2<Integer, String>(, "jack"));
// 并行化集合,创建RDD
JavaPairRDD<Integer, String> scores = sc.parallelizePairs(scoreList);
// 对scores RDD执行sortByKey算子
// sortByKey其实就是根据key进行排序,可以手动指定升序,或者降序
// 返回的,还是JavaPairRDD,其中的元素内容,都是和原始的RDD一模一样的
// 但是就是RDD中的元素的顺序,不同了
JavaPairRDD<Integer, String> sortedScores = scores.sortByKey(false);
// 打印sortedScored RDD
sortedScores.foreach(new VoidFunction<Tuple2<Integer,String>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<Integer, String> t) throws Exception {
System.out.println(t.\_1 + ": " + t.\_2);
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void groupByKey() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("groupByKey")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<String, Integer>> scoreList = Arrays.asList(
new Tuple2<String, Integer>("class1", ),
new Tuple2<String, Integer>("class2", ),
new Tuple2<String, Integer>("class1", ),
new Tuple2<String, Integer>("class2", ));
// 并行化集合,创建JavaPairRDD
JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList);
// 针对scores RDD,执行groupByKey算子,对每个班级的成绩进行分组
// groupByKey算子,返回的还是JavaPairRDD
// 但是,JavaPairRDD的第一个泛型类型不变,第二个泛型类型变成Iterable这种集合类型
// 也就是说,按照了key进行分组,那么每个key可能都会有多个value,此时多个value聚合成了Iterable
// 那么接下来,我们是不是就可以通过groupedScores这种JavaPairRDD,很方便地处理某个分组内的数据
JavaPairRDD<String, Iterable<Integer>> groupedScores = scores.groupByKey();
// 打印groupedScores RDD
groupedScores.foreach(new VoidFunction<Tuple2<String,Iterable<Integer>>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<String, Iterable<Integer>> t)
throws Exception {
System.out.println("class: " + t.\_1);
Iterator<Integer> ite = t.\_2.iterator();
while(ite.hasNext()) {
System.out.println(ite.next());
}
System.out.println("==============================");
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void flatMap() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("flatMap")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 构造集合
List<String> lineList = Arrays.asList("hello you", "hello me", "hello world");
// 并行化集合,创建RDD
JavaRDD<String> lines = sc.parallelize(lineList);
// 对RDD执行flatMap算子,将每一行文本,拆分为多个单词
// flatMap算子,在java中,接收的参数是FlatMapFunction
// 我们需要自己定义FlatMapFunction的第二个泛型类型,即,代表了返回的新元素的类型
// call()方法,返回的类型,不是U,而是Iterable<U>,这里的U也与第二个泛型类型相同
// flatMap其实就是,接收原始RDD中的每个元素,并进行各种逻辑的计算和处理,可以返回多个元素
// 多个元素,即封装在Iterable集合中,可以使用ArrayList等集合
// 新的RDD中,即封装了所有的新元素;也就是说,新的RDD的大小一定是 >= 原始RDD的大小
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
private static final long serialVersionUID = 1L;
// 在这里会,比如,传入第一行,hello you
// 返回的是一个Iterable<String>(hello, you)
@Override
public Iterable<String> call(String t) throws Exception {
return Arrays.asList(t.split(" "));
}
});
// 打印新的RDD
words.foreach(new VoidFunction<String>() {
private static final long serialVersionUID = 1L;
@Override
public void call(String t) throws Exception {
System.out.println(t);
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void filter() {
// 创建SparkConf
SparkConf conf = new SparkConf().setAppName("filter").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Integer> numbers = Arrays.asList(, , , , , , , , , );
// 并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
// 对初始RDD执行filter算子,过滤出其中的偶数
// filter算子,传入的也是Function,其他的使用注意点,实际上和map是一样的
// 但是,唯一的不同,就是call()方法的返回类型是Boolean
// 每一个初始RDD中的元素,都会传入call()方法,此时你可以执行各种自定义的计算逻辑
// 来判断这个元素是否是你想要的
// 如果你想在新的RDD中保留这个元素,那么就返回true;否则,不想保留这个元素,返回false
JavaRDD<Integer> evenNumberRDD = numberRDD.filter(
new Function<Integer, Boolean>() {
private static final long serialVersionUID = 1L;
// 在这里,1到10,都会传入进来
// 但是根据我们的逻辑,只有2,4,6,8,10这几个偶数,会返回true
// 所以,只有偶数会保留下来,放在新的RDD中
@Override
public Boolean call(Integer v1) throws Exception {
return v1 % == ;
}
});
// 打印新的RDD
evenNumberRDD.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
// 关闭JavaSparkContext
sc.close();
}
private static void map() {
//创建SparkConf
SparkConf conf = new SparkConf().setAppName("map").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构建集合
List numbers = Arrays.asList(,,,,);
//并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
// 使用map算子,将集合中的每个元素都乘以2
// map算子,是对任何类型的RDD,都可以调用的
// 在java中,map算子接收的参数是Function对象
// 创建的Function对象,一定会让你设置第二个泛型参数,这个泛型类型,就是返回的新元素的类型
// 同时call()方法的返回类型,也必须与第二个泛型类型同步
// 在call()方法内部,就可以对原始RDD中的每一个元素进行各种处理和计算,并返回一个新的元素
// 所有新的元素就会组成一个新的RDD
// 所有新的元素就会组成一个新的RDD
JavaRDD<Integer> multipleNumberRDD = numberRDD.map(new Function<Integer, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Integer call(Integer v1) throws Exception {
return v1 \* ;
}
});
multipleNumberRDD.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
}
}
运行代码
手机扫一扫
移动阅读更方便
你可能感兴趣的文章