近期在做CPU Usage方面的事情,让CPU以一种高占用率的状态运行一定的时间,需要读取CPU各个核的占用率,网上关于这方面的资料好少,FQ也只找到了一个WMI的方法,但是感觉对比任务管理器里面的结果偏小。目前也只能读取CPU总的占用率,和任务管理器看起来差不多,也不是完全相同。
虽然还没有实现结果,但是想记录一下历程。
https://blog.csdn.net/wangting627/article/details/22931337
https://blog.csdn.net/fyxichen/article/details/50577580
方法一:
方法二:
原理:先读取一次CPU的当前的空闲时间,内核时间和用户时间,间隔一秒,再次读取三个时间,经过公式演算,得到CPU在这一秒内的占用率。
第一次读取:
FILETIME ftIdle, ftKernel, ftUser;
BOOL flag = FALSE;
if (flag = GetSystemTimes(&ftIdle, &ftKernel, &ftUser))
{
m\_fOldCPUIdleTime = FileTimeToDouble(&ftIdle);
m\_fOldCPUKernelTime = FileTimeToDouble(&ftKernel);
m\_fOldCPUUserTime = FileTimeToDouble(&ftUser);
}
return flag;
第二次读取:
FILETIME ftIdle, ftKernel, ftUser;
//检索系统定时信息,对于多处理器系统,返回值是各处理器总和的时间
//参数1:空闲时间
//参数2:内核时间
//参数3:用户时间
//函数成功,返回值为非零。函数失败,返回值为零
if (GetSystemTimes(&ftIdle, &ftKernel, &ftUser))
{
double fCPUIdleTime = FileTimeToDouble(&ftIdle);
double fCPUKernelTime = FileTimeToDouble(&ftKernel);
double fCPUUserTime = FileTimeToDouble(&ftUser);}
计算占用率:
//CPU使用率 = (总的时间-空闲时间) / 总的时间
nCPUUseRate = (int)(100.0 - (fCPUIdleTime - m_fOldCPUIdleTime) / (fCPUKernelTime - m_fOldCPUKernelTime + fCPUUserTime - m_fOldCPUUserTime)*100.0);
原理:CPU的占用率 = (CPU总时间 - CPU空闲时间)/ CPU总时间。
举几个例子看看:
占用率
num值
空闲时间:运行时间
50%
1
1:1
66.7%
2
1:2
80%
4
1:4
90%
9
1:9
如果想要控制CPU的占用率是50%,那么就设置num = 1,空闲时间和运行时间的比例为1:1。不过这些都有个前提是,电脑中并没有运行其他的程序。但是显然不可能,所以这个占用率也只是个大概。并且想要数据比较准确,一秒之内的空闲和运行最好是间隔运行,如果控制前0.5s运行,后0.5秒Sleep,效果也是不好的,在代码中设置的是0.1s休息。
int busytime = 100;
int idletime = busytime;
long starttime = 0;
while (true)
{
starttime = GetTickCount();
//std::cout<<starttime<<std::endl;//调试用
while ((GetTickCount() - starttime) <= busytime \* num)
;
Sleep(idletime);
}
以1:9的代码运行结果如下:
可以看到其实任务管理器中的值每隔一秒刷新一次,我写的程序是每隔一秒刷新一次,然后任务管理器中的值看起来比代码中的偏高一些,大胆猜测一下是因为我的程序也在运行,运行过程中也会增加占用率。
代码是google找到的,链接我忘了,后续找到补上,需要FQ
bool getCpuLoadInfo() {
HRESULT hres;
// Step 1: --------------------------------------------------
// Initialize COM. ------------------------------------------
hres = CoInitializeEx(0, COINIT\_MULTITHREADED);
if (FAILED(hres)) {
cout << "Failed to initialize COM library. Error code = 0x" << hex << hres << endl;
return 0; // Program has failed.
}
// Step 2: --------------------------------------------------
// Set general COM security levels --------------------------
// Note: If you are using Windows 2000, you need to specify -
// the default authentication credentials for a user by using
// a SOLE\_AUTHENTICATION\_LIST structure in the pAuthList ----
// parameter of CoInitializeSecurity ------------------------
hres = CoInitializeSecurity(
NULL,
-1, // COM authentication
NULL, // Authentication services
NULL, // Reserved
RPC\_C\_AUTHN\_LEVEL\_DEFAULT, // Default authentication
RPC\_C\_IMP\_LEVEL\_IMPERSONATE, // Default Impersonation
NULL, // Authentication info
EOAC\_NONE, // Additional capabilities
NULL // Reserved
);
if (FAILED(hres)) {
cout << "Failed to initialize security. Error code = 0x"
<< hex << hres << endl;
CoUninitialize();
return 0; // Program has failed.
}
// Step 3: ---------------------------------------------------
// Obtain the initial locator to WMI -------------------------
IWbemLocator \*pLoc = NULL;
hres = CoCreateInstance(
CLSID\_WbemLocator,
0,
CLSCTX\_INPROC\_SERVER,
IID\_IWbemLocator, (LPVOID \*)&pLoc);
if (FAILED(hres)) {
cout << "Failed to create IWbemLocator object."
<< " Err code = 0x"
<< hex << hres << endl;
CoUninitialize();
return 0; // Program has failed.
}
// Step 4: -----------------------------------------------------
// Connect to WMI through the IWbemLocator::ConnectServer method
IWbemServices \*pSvc = NULL;
// Connect to the root\\cimv2 namespace with
// the current user and obtain pointer pSvc
// to make IWbemServices calls.
hres = pLoc->ConnectServer(
\_bstr\_t(L"ROOT\\\\CIMV2"), // Object path of WMI namespace
NULL, // User name. NULL = current user
NULL, // User password. NULL = current
0, // Locale. NULL indicates current
NULL, // Security flags.
0, // Authority (e.g. Kerberos)
0, // Context object
&pSvc // pointer to IWbemServices proxy
);
if (FAILED(hres)) {
cout << "Could not connect. Error code = 0x" << hex << hres << endl;
pLoc->Release();
CoUninitialize();
return 0; // Program has failed.
}
cout << "Connected to ROOT\\\\CIMV2 WMI namespace" << endl;
// Step 5: --------------------------------------------------
// Set security levels on the proxy -------------------------
hres = CoSetProxyBlanket(
pSvc, // Indicates the proxy to set
RPC\_C\_AUTHN\_WINNT, // RPC\_C\_AUTHN\_xxx
RPC\_C\_AUTHZ\_NONE, // RPC\_C\_AUTHZ\_xxx
NULL, // Server principal name
RPC\_C\_AUTHN\_LEVEL\_CALL, // RPC\_C\_AUTHN\_LEVEL\_xxx
RPC\_C\_IMP\_LEVEL\_IMPERSONATE, // RPC\_C\_IMP\_LEVEL\_xxx
NULL, // client identity
EOAC\_NONE // proxy capabilities
);
if (FAILED(hres)) {
cout << "Could not set proxy blanket. Error code = 0x"
<< hex << hres << endl;
pSvc->Release();
pLoc->Release();
CoUninitialize();
return 0; // Program has failed.
}
// Step 6: --------------------------------------------------
// Use the IWbemServices pointer to make requests of WMI ----
// For example, get the name of the operating system
IEnumWbemClassObject\* pEnumerator = NULL;
IWbemClassObject \*pclsObj;
int i;
//while (1) {
i = 1;
hres = pSvc->ExecQuery(
bstr\_t("WQL"),
bstr\_t("SELECT \* FROM Win32\_PerfFormattedData\_PerfOS\_Processor"),
WBEM\_FLAG\_FORWARD\_ONLY | WBEM\_FLAG\_RETURN\_IMMEDIATELY,
NULL,
&pEnumerator);
if (FAILED(hres)) {
cout << "Query for operating system name failed."
<< " Error code = 0x"
<< hex << hres << endl;
pSvc->Release();
pLoc->Release();
CoUninitialize();
return 0; // Program has failed.
}
// Step 7: -------------------------------------------------
// Get the data from the query in step 6 -------------------
ULONG uReturn = 0;
while (pEnumerator) {
HRESULT hr = pEnumerator->Next(WBEM\_INFINITE, 1,
&pclsObj, &uReturn);
if (0 == uReturn) {
break;
}
VARIANT vtProp;
// Get the value of the Name property
//hr = pclsObj->Get(L"Name", 0, &vtProp, 0, 0);
hr = pclsObj->Get(L"PercentProcessorTime", 0, &vtProp, 0, 0);
wcout << " CPU Usage of CPU " << i << " : " << vtProp.bstrVal << endl;
VariantClear(&vtProp);
//IMPORTANT!!
pclsObj->Release();
i++;
}
//}
// Cleanup
// ========
pSvc->Release();
pLoc->Release();
pEnumerator->Release();
//pclsObj->Release();
CoUninitialize();
return 0; // Program successfully completed.
}
以1:9的比例
先看一下它运行之后的效果图:
看右侧任务管理器中的图形,自始至终没有低于90%,可是WMI读出来的却有70%的出现,况且我自己设置的比例是1:9,自己加的占用率,所以感觉WMI读出来的可能有点不合理,偏低了。看资料有几种计算方法,也不知道哪个正确。
另外分享一下WMI的小技巧。文中代码就是找到“PercentProcessorTime”的值,作为CPU的占用率。一起试着在Windows中手动找一找呗。
a. win+R输入"wbemtest"
试了多种方法,无法知道哪个结果更加权威,也或者是了解并不深,WMI内部的机制也并不是很清楚,任务管理器里面的计算机制是什么也不清楚,还得继续学习进步。这方面的资料很少,因此学习总结做一下分享。
目前还没有实现每个核的占用率读取,等后续学习深入补上源码。
手机扫一扫
移动阅读更方便
你可能感兴趣的文章