Link.
求
\[\sum_{m>0\\a_{1..m}>0\\a_1+\cdots+a_m=n}\prod_{i=1}^mf_{a_i}
\]
其中 \(f_i\) 为 Fibonacci 数列第 \(i\) 项(\(f_0=0,f_1=1\)),答案对 \(10^9+7\) 取模。
\(n\le10^{10^4}\)。
记 \(F(x)\) 为 \(\{f\}\) 的 OGF,首先来推导 \(F(x)\)。根据定义 \(f_{n+2}=f_{n+1}+f_n\),可以发现经过适当位移,\(F(x)\) 能推出其自身而解出表达式。具体地:
\[\begin{aligned}
&~~~xF(x)+F(x)=\frac{1}xF(x)-1\\
&\Rightarrow~~(x+1-\frac{1}x)F(x)=-1\\
&\Rightarrow~~F(x)=\frac{x}{1-x-x^2}
\end{aligned}
\]
令 \(n\) 的答案为 \(g_n\),\(g_0=1\)。简单 DP 得出递推式:
\[g_n=\sum_{i=1}^nf_ig_{n-i}
\]
显然的卷积关系。令 \(\{g\}\) 的 OGF 为 \(G(x)\),则:
\[\begin{aligned}
G(x)&=1+G(x)F(x)\\
&=\frac{1}{1-F(x)}\\
&=\frac{1-x-x^2}{1-2x-x^2}
\end{aligned}
\]
提出一些常数:
\[\Rightarrow~~~~G(x)=1-\frac{x}{x^2+2x-1}
\]
我们想求 \(g_n\),即 \([x^n]G(x)\),就得把上式最后一项分式结构配凑成等比数列求和的形式。首先暴力因式分解 \(x^2+2x-1\),用求根公式求出其两根:
\[x_{1,2}=\frac{-2\pm2\sqrt{2}}{2}=-1\pm\sqrt2
\]
所以 \(x^2+2x-1=(x-x_1)(x-x_2)\)。代入 \(G(x)\) 的表达式:
\[\begin{aligned}
G(x)&=1-\frac{x}{(x-x_1)(x-x_2)}\\
&=1-\frac{x}{x_1-x_2}\left(\frac{1}{x-x_1}-\frac{1}{x-x_2} \right)\\
&=1-\frac{x}{x_1-x_2}\left(\frac{1}{x_2}\sum_{i=0}^{+\infty}\frac{x^i}{x_2^i}-\frac{1}{x_1}\sum_{i=0}^{+\infty}\frac{x^i}{x_1^i} \right)\\
&=1-\frac{1}{x_1-x_2}\sum_{i=1}^{+\infty}(x_2^{-i}-x_1^{-i})x^i
\end{aligned}
\]
拆得清清楚楚啦,答案:
\[[x^n]G(x)=(x_2-x_1)^{-1}(x_2^{-n}-x_1^{-n})
\]
代入 \(x_{1,2}\):
\[[x^n]G(x)=-\frac{\sqrt2}4[(1-\sqrt2)^n-(1+\sqrt2)^n]
\]
最后 \(\sqrt2\equiv 59713600\equiv 940286407\pmod{10^9+7}\),所以可以 \(\mathcal O(\log p+\log n)\)(\(p\) 是素模数)直接算出来。
/* Clearink */
#include <cstdio>
const int INV4 = 250000002, S2 = 59713600, MOD = 1e9 + 7;
inline int rmod () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) {
x = ( x * 10ll + ( s ^ '0' ) ) % ( MOD - 1 );
}
return x;
}
inline int mul ( const long long a, const int b ) { return a * b % MOD; }
inline int sub ( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int add ( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int mpow ( int a, int b ) {
int ret = 1;
for ( ; b; a = mul ( a, a ), b >>= 1 ) ret = mul ( ret, b & 1 ? a : 1 );
return ret;
}
int main () {
int n = rmod ();
printf ( "%d\n", sub ( 0, mul ( mul ( S2, INV4 ),
sub ( mpow ( sub ( 1, S2 ), n ), mpow ( add ( 1, S2 ), n ) ) ) ) );
return 0;
}
手机扫一扫
移动阅读更方便
你可能感兴趣的文章