$\Large{\LaTeX}$ 常用公式
阅读原文时间:2023年07月09日阅读:2

$$\Large{\LaTeX}$$:

\[\Large{\LaTeX}
\]

$ $ 表示行内

$$ $$ 表示独立

$\operatorname{lcm}(x)$\(\operatorname{lcm}(x)\)

$\pm$\(\pm\)

$\equiv$\(\equiv\)

$\pmod{p}$\(\pmod{p}\)

$\%$\(\%\)

$\sqrt[n]{x} \sqrt{x}$\(\sqrt[n]{x} \sqrt{x}\)

$\in \ne$\(\in \ne\)

$\leqslant \geqslant$\(\leqslant \geqslant\)

$\perp \angle 45^\circ$\(\perp \angle \ 45^\circ\)

$\forall \exists$\(\forall \exists\)

$\therefore \& \because$\(\therefore \& \because\)

$\implies \iff$\(\implies \iff\)

$a^{x+2y}_{i,j}$\(a^{x+2y}_{i,j}\)

$\sum\limits_{i=1}^n a_i$\(\sum\limits_{i=1}^n a_i\)

$\prod\limits_{i=1}^n a_i$\(\prod\limits_{i=1}^n a_i\)

$\lim\limits_{n\to\infty}x_n$\(\lim\limits_{n\to\infty}x_n\)

$\int_{-N}^{N}e^x \, dx$\(\int_{-N}^{N}e^x \, dx\)

$\dfrac{1}{x+\dfrac{3}{y+\dfrac{1}{5}}}$\(\dfrac{1}{x+\dfrac{3}{y+\dfrac{1}{5}}}\)

$\dots \vdots \ddots$\(\dots \quad \vdots \quad \ddots\)

$\begin{matrix}a&b\\c&d\end{matrix}$\(\begin{matrix}a&b\\c&d\end{matrix}\)

$\begin{vmatrix}a&b\\c&d\end{vmatrix}$\(\begin{vmatrix}a&b\\c&d\end{vmatrix}\)

$\begin{bmatrix}a&b\\c&d\end{bmatrix}$\(\begin{bmatrix}a&b\\c&d\end{bmatrix}\)

$\begin{Batrix}a&b\\c&d\end{Batrix}$\(\begin{Bmatrix}a&b\\c&d\end{Bmatrix}\)

$\begin{pmatrix}a&b\\c&d\end{pmatrix}$\(\begin{pmatrix}a&b\\c&d\end{pmatrix}\)

$f(x)=\begin{cases} x & x\geqslant0 \\ x^{-1} & x<0 \end{cases}$\(f(x)=\begin{cases} x & x\geqslant0 \\ x^{-1} & x<0 \end{cases}\)

$\begin{aligned} 3 & = 1+1+1 \\ & = 1+2 \end{aligned}$\(\begin{aligned} 3 & = 1+1+1 \\ & = 1+2 \end{aligned}\)

$\begin{aligned} a_1 & = 1 \\ a_2 & = 2 \\ & \dots \\ a_n & = n \end{aligned}$\(\begin{aligned} a_1 & = 1 \\ a_2 & = 2 \\ & \dots \\ a_n & = n \end{aligned}\)

$\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega$\(\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega\)

$\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \iota \kappa \lambda$\(\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \iota \kappa \lambda\)

$\mu \nu \xi \omicron \pi \varepsilon \varrho \varsigma \vartheta \varphi \aleph$\(\mu \nu \xi \omicron \pi \varepsilon \varrho \varsigma \vartheta \varphi \aleph\)<-最后一个是希伯来文

$\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$\(\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\)

$\mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$\(\mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\)

$\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$\(\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\)

$\left(\dfrac{y+\dfrac{2}{3}}{x+\dfrac{2}{3}}\right)^5$\(\left(\dfrac{y+\dfrac{2}{3}}{x+\dfrac{2}{3}}\right)^5\)此功能(使用\left和\right)可以推广到不同的括号

$\left\lfloor\dfrac{1}{2}\right\rfloor \left\lceil\dfrac{1}{2}\right\rceil$\(\left\lfloor\dfrac{1}{2}\right\rfloor \left\lceil\dfrac{1}{2}\right\rceil\)

$\boxed{a^x+b^y=c^z}$\(\boxed{a^x+b^y=c^z}\)

下面 \(m\) 均表示一个中文字符的宽度,即两个英文字符的宽度。

\(x,y\) 均为演示需要,重点为中间空隙大小。

$x \! y$宽度为 \(-\dfrac{m}{6}\)

\(x \! y\)

$xy$宽度为 \(0\)

\(xy\)

$x \, y$宽度为 \(\dfrac{m}{6}\)

\(x \, y\)

$x \; y$宽度为 \(\dfrac{2m}{7}\)

\(x \; y\)

$x \ y$宽度为 \(\dfrac{m}{3}\)

\(x \ y\)

$x \quad y$宽度为 \(m\)

\(x \quad y\)

$x \qquad y$宽度为 \(2m\)

\(x \qquad y\)