Dive into TensorFlow系列(2)- 解析TF核心抽象op算子
阅读原文时间:2023年07月08日阅读:6

本文作者:李杰

TF计算图从逻辑层来讲,由op与tensor构成。op是项点代表计算单元,tensor是边代表op之间流动的数据内容,两者配合以数据流图的形式来表达计算图。那么op对应的物理层实现是什么?TF中有哪些op,以及各自的适用场景是什么?op到底是如何运行的?接下来让我们一起探索和回答这些问题。

1.1 op定义

op代表计算图中的节点,是tf.Operation对象,代表一个计算单元。用户在创建模型和训练代码时,会创建一系列op及其依赖关系,并将这些op和依赖添加到tf.Graph对象中(一般为默认图)。比如:tf.matmul()就是一个op,它有两个输入tensor和一个输出tensor。

1.2 op分类

op的分类一般有多个视角,比如按是否内置划分、按工作类型划分。

按是否内置划分,一般分为:内置op和自定义op(见“二、自定义op”部分介绍)。

按工作类型划分,一般分为:常见数学op、数组op、矩阵op、有状态op、神经网络op、检查点op、队列与同步op、控制流op。TF白皮书对内置op的分类总结如下:

1.3 op与kernel

op一般都有名称且代表一个抽象的计算过程。op可以设置若干属性,但这些属性必须在编译期提供或推理得到,因为它们用来实例化一个节点对象从而执行真正的计算。属性的经典用法就是拿来支持类型多态,比如两个浮点张量的矩阵乘法与两个整型张量的矩阵乘法。

kernel是op在指定设备类型(CPU/GPU)上的具体实现。TF二进制库通过注册机制定义了一系列op及对应的kernel实现,用户可以提供额外的op定义与kernel实现进行扩充。一般来说,一个op对应多个kernel实现。

接下来让我们一起用矩阵乘法MatMul算子的相关代码来理解op与kernel的关系(此处不必纠结代码细节,只需体会op与kernel关系即可):

// 首先给出op注册的定义。其中输入输出支持泛型,其合法类型在Attr中进行枚举。
// 代码位置 tensorflow1.15.5\tensorflow\core\ops\math_ops.cc
REGISTER_OP("MatMul")
.Input("a: T")
.Input("b: T")
.Output("product: T")
.Attr("transpose_a: bool = false")
.Attr("transpose_b: bool = false")
.Attr(
"T: {bfloat16, half, float, double, int32, int64, complex64, "
"complex128}")
.SetShapeFn(shape_inference::MatMulShape);

// MatMul的实现,采用类模板机制
// 代码位置 tensorflow1.15.5\tensorflow\core\kernels\matmul_op.cc
template
class MatMulOp : public OpKernel {
public:
explicit MatMulOp(OpKernelConstruction* ctx)
: OpKernel(ctx), algorithms_set_already_(false) {
OP_REQUIRES_OK(ctx, ctx->GetAttr("transpose_a", &transpose_a_));
OP_REQUIRES_OK(ctx, ctx->GetAttr("transpose_b", &transpose_b_));

  LaunchMatMul<Device, T, USE\_CUBLAS>::GetBlasGemmAlgorithm(  
    ctx, &algorithms\_, &algorithms\_set\_already\_);  
  use\_autotune\_ = MatmulAutotuneEnable();  
}  

// 省略了很多代码…
private:
std::vector algorithms_;
bool algorithms_set_already_;
bool use_autotune_;
bool transpose_a_;
bool transpose_b_;
};

// MatMul的op定义与kernel实现绑定处理
// 代码位置 tensorflow1.15.5\tensorflow\core\kernels\matmul_op.cc
#define REGISTER_CPU_EIGEN(T) /*cpu与eigen组合对应实现*/ \
REGISTER_KERNEL_BUILDER( \
Name("MatMul").Device(DEVICE_CPU).TypeConstraint("T").Label("eigen"), \
MatMulOp);

#define REGISTER_CPU(T) /*cpu对应实现(eigen与非eigen)*/ \
REGISTER_KERNEL_BUILDER( \
Name("MatMul").Device(DEVICE_CPU).TypeConstraint("T"), \
MatMulOp); \
REGISTER_CPU_EIGEN(T);

#define REGISTER_GPU(T) /*gpu对应实现(cublas与非cublas)*/ \
REGISTER_KERNEL_BUILDER( \
Name("MatMul").Device(DEVICE_GPU).TypeConstraint("T"), \
MatMulOp); \
REGISTER_KERNEL_BUILDER(Name("MatMul") \
.Device(DEVICE_GPU) \
.TypeConstraint("T") \
.Label("cublas"), \
MatMulOp)

用户编写的模型训练代码一般由TF原生的op算子及其依赖关系组成,但有时候我们定义的计算逻辑在TF中没有相应的op实现。根据TensorFlow官网的建议,我们应当先组合python op算子或python函数进行尝试。完成尝试之后再决定要不要自定义op。

2.1 自定义op场景

一般来说,需要自定义op的场景有如下3个:

•用TF原生op组合来表达新计算逻辑的过程比较复杂或不可能

•用TF原生op组合来表达新计算逻辑,其计算性能较低

•在新版编译器中也较难实现op融合的计算逻辑需要我们手动实现融合

在此举个例子方便大家理解。假如我们要实现一个新计算实逻:中位数池化(median pooling),过程中要在滑动窗口不断求得中位数。检索TF文档没有发现对应op,因此我们先考虑用TF python op组合来实现它,果然通过ExtractImagePatches and TopK就可以实现这个功能。经测试前述组合方案并不是计算和存储高效的,因此我们就有必要将median pooling在一个op中进行高效实现。

2.2 自定义op流程

自定义op一般遵循5个基本步骤:

1.注册op,具体包括:指定名称、输入/输出声明、形状函数。

2.定义kernel(即op的实现)并与op绑定。一个op有多个kernel实现,具体由输入输出类型、硬件(CPU、GPU)决定。

3.创建python包装器,一般由op注册机制自动完成。

4.编写op的梯度计算函数(可选项)。

5.测试op,通过python测试较为方便,当然也可通过C++进行测试。

接下来我们就以官网最简单的ZeroOut同步式自定义op(继承OpKernel)为例,结合代码来讲述上述5个步骤。下面先给出步骤1和步骤2用C++实现的代码(官方推荐用bazel编译so文件):

// 步骤1:注册op
REGISTER_OP("ZeroOut")
.Input("to_zero: int32")
.Output("zeroed: int32")
.SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) {
c->set_output(0, c->input(0)); //c's input and output type is std::vector
return Status::OK();
});

// 步骤2:定义kernel(常规CPU设备),并把kernel与op绑定
class ZeroOutOp : public OpKernel {
public:
explicit ZeroOutOp(OpKernelConstruction* context) : OpKernel(context) {}

void Compute(OpKernelContext\* context) override {  
    // Grab the input tensor from OpKernelContext instance  
    const Tensor& input\_tensor = context->input(0);  
    auto input = input\_tensor.flat<int32>();

    // Create an output tensor  
    Tensor\* output\_tensor = NULL;  
    OP\_REQUIRES\_OK(context, context->allocate\_output(0, input\_tensor.shape(),  
        &output\_tensor));    // OP\_REQUIRES\_OK第二个参数一般为方法调用,此处为输出张量分配内存空间  
    auto output\_flat = output\_tensor->flat<int32>();

    // Set all but the first element of the output tensor to 0.  
    const int N = input.size();  
    for (int i = 1; i < N; i++) {  
        output\_flat(i) = 0;  
    }

    // Preserve the first input value if possible.  
    if (N > 0) output\_flat(0) = input(0);  
}  

};

REGISTER_KERNEL_BUILDER(Name("ZeroOut").Device(DEVICE_CPU), ZeroOutOp);

步骤3加载上述so文件(自动完成前后端op映射);步骤4是可选项,此处不需要;步骤5基于python api测试op功能。相应代码如下:

import tensorflow as tf
zero_out_module = tf.load_op_library('./zero_out.so') # 加载so文件生成python module
with tf.Session(''):
zero_out_module.zero_out([[1, 2], [3, 4]]).eval()

Prints

array([[1, 0], [0, 0]], dtype=int32)

2.3 高级话题

关于op的技术话题还有很多,我们在此简述一些要点:

1.如果实现了一个多线程CPU kernel,则可以利用work_sharder.h中的Shard函数。

2.大多数op以同步方式工作,只需继承OpKernel改写Compute()方法,且此方法必须线程安全。

3.如果一个op因为其它op的运行而阻塞,则这个op可以采用异步方式工作,继承AsyncOpKernel改写ComputeAsync()方法,且此方法必须线程安全。异步op最经典的例子就是跨设备通信send/recv pair中的RecvOp。

4.如果要为op配置一些静态属性,可使用Attr,它有一套特有的支持类型。典型应用是支持泛型。

5.实现GPU kernel有两部分内容:OpKernel和CUDA kernel,相应的加载代码。

6.编译自定义op,首先要配置头文件搜索路径与库文件搜索路径,接着指定编译和链接选项,最后还要确保ABI兼容性。

7.Resource(资源)代表相同设备上op共享的内容,比如:张量值、kv存储表、队列、读取器、网络连接等。代表资源的类必须继承ResourceBase,然后注册ResourceHandleOp生成资源句柄,普通op以resouce类型的Input进行引入。

3.1 op运行框架

整体来看,op与kernel都有其结构描述与统一的注册管理中心。而OpDefBuilder有两个包装类OpDefBuilderWrapper和OpDefBuilderReceiver,前者支持op构建的链式语法,后者接受op构建结果并进行注册。众所周知,op是编译期概念,而kernel是运行期概念,在AI编译器的后端处理流程中会进行op的算子选择,此过程会基于一系列策略为op匹配最合适的kernel实现。

3.2 若干技术细节

首先,我们来看一下大家在使用TensorFlow过程中经常碰到的libtensorflow_framework.so。按照tf1.15.5/tensorflow/BUILD中的描述,libtensorflow_framework.so定义了op和kernel的注册机制而不涉及具体实现。

// rootdir=tensorflow1.15.5
// ${rootdir}/tensorflow/BUILD
/*

A shared object which includes registration mechanisms for ops and

kernels. Does not include the implementations of any ops or kernels. Instead,

the library which loads libtensorflow_framework.so

(e.g. _pywrap_tensorflow_internal.so for Python, libtensorflow.so for the C

API) is responsible for registering ops with libtensorflow_framework.so. In

addition to this core set of ops, user libraries which are loaded (via

TF_LoadLibrary/tf.load_op_library) register their ops and kernels with this

shared object directly.

*/
tf_cc_shared_object(
name = "tensorflow_framework",
framework_so = [],
linkopts = select({
"//tensorflow:macos": [],
"//tensorflow:windows": [],
"//tensorflow:freebsd": [
"-Wl,--version-script,$(location //tensorflow:tf_framework_version_script.lds)",
"-lexecinfo",
],
"//conditions:default": [
"-Wl,--version-script,$(location //tensorflow:tf_framework_version_script.lds)",
],
}),
linkstatic = 1,
per_os_targets = True,
soversion = VERSION,
visibility = ["//visibility:public"],
deps = [
"//tensorflow/cc/saved_model:loader_lite_impl",
"//tensorflow/core:core_cpu_impl",
"//tensorflow/core:framework_internal_impl", /* 展开此target进行查看 */
"//tensorflow/core:gpu_runtime_impl",
"//tensorflow/core/grappler/optimizers:custom_graph_optimizer_registry_impl",
"//tensorflow/core:lib_internal_impl",
"//tensorflow/stream_executor:stream_executor_impl",
"//tensorflow:tf_framework_version_script.lds",
] + tf_additional_binary_deps(),
)

// ${rootdir}/tensorflow/core/BUILD
tf_cuda_library(
name = "framework_internal_impl",
srcs = FRAMEWORK_INTERNAL_PRIVATE_HEADERS + glob( // 可以查看FRAMEWORK_INTERNAL_PRIVATE_HEADERS内容
[
"example/**/*.cc",
"framework/**/*.cc",
"util/**/*.cc",
"graph/edgeset.cc",
"graph/graph.cc",
"graph/graph_def_builder.cc",
"graph/node_builder.cc",
"graph/tensor_id.cc",
"graph/while_context.h",
"graph/while_context.cc",
],
// 省略了诸多代码
)

// FRAMEWORK_INTERNAL_PRIVATE_HEADERS的内容
FRAMEWORK_INTERNAL_PRIVATE_HEADERS = [
"graph/edgeset.h",
"graph/graph.h",
"graph/graph_def_builder.h",
"graph/node_builder.h",
"graph/tensor_id.h",
] + glob(
[
"example/**/*.h",
"framework/**/*.h", // 这里就是重点,查看${rootdir}/tensorflow/core/framework/op.h和opkernel.h
"util/**/*.h",
]
)

// 先来看op.h
#define REGISTER_OP(name) REGISTER_OP_UNIQ_HELPER(__COUNTER__, name)
#define REGISTER_OP_UNIQ_HELPER(ctr, name) REGISTER_OP_UNIQ(ctr, name)
#define REGISTER_OP_UNIQ(ctr, name) \
static ::tensorflow::register_op::OpDefBuilderReceiver register_op##ctr \
TF_ATTRIBUTE_UNUSED = \
::tensorflow::register_op::OpDefBuilderWrapper(name)

// 再来看看opkernel.h
#define REGISTER_KERNEL_BUILDER(kernel_builder, …) \
REGISTER_KERNEL_BUILDER_UNIQ_HELPER(__COUNTER__, kernel_builder, __VA_ARGS__)

#define REGISTER_KERNEL_BUILDER_UNIQ_HELPER(ctr, kernel_builder, …) \
REGISTER_KERNEL_BUILDER_UNIQ(ctr, kernel_builder, __VA_ARGS__)

#define REGISTER_KERNEL_BUILDER_UNIQ(ctr, kernel_builder, …) \
constexpr bool should_register_##ctr##__flag = \
SHOULD_REGISTER_OP_KERNEL(#__VA_ARGS__); \
static ::tensorflow::kernel_factory::OpKernelRegistrar \
registrar__body__##ctr##__object( \
should_register_##ctr##__flag \
? ::tensorflow::register_kernel::kernel_builder.Build() \
: nullptr, \
#__VA_ARGS__, \
[](::tensorflow::OpKernelConstruction* context) \
-> ::tensorflow::OpKernel* { \
return new __VA_ARGS__(context); \
});
参照上述同样的流程,我们可以发现libtensorflow.so中涉及op与kernel的具体实现,同时也包括Session的具体实现。

最后,我们再来讲讲REGISTER_OP宏背后的具体原理。我们在上面已经给出了此宏的定义,此处针对它的实现展开谈谈:

// 先来看op.h
#define REGISTER_OP(name) REGISTER_OP_UNIQ_HELPER(__COUNTER__, name)
#define REGISTER_OP_UNIQ_HELPER(ctr, name) REGISTER_OP_UNIQ(ctr, name)
#define REGISTER_OP_UNIQ(ctr, name) \
static ::tensorflow::register_op::OpDefBuilderReceiver register_op##ctr \
TF_ATTRIBUTE_UNUSED = \
::tensorflow::register_op::OpDefBuilderWrapper(name)

// REGISTER_OP的一般用法如下
REGISTER_OP("ZeroOut")
.Input("to_zero: int32")
.Output("zeroed: int32")
.SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) {
c->set_output(0, c->input(0));
return Status::OK();
});

// op定义的链式规则是通过OpDefBuilderWrapper类实现的
class OpDefBuilderWrapper {
public:
explicit OpDefBuilderWrapper(const char name[]) : builder_(name) {}

OpDefBuilderWrapper& Input(string spec) {
builder_.Input(std::move(spec));
return *this; // 显而易见,调用Input仍然返回OpDefBuilderWrapper本身
}
OpDefBuilderWrapper& Output(string spec) {
builder_.Output(std::move(spec));
return *this;
}

OpDefBuilderWrapper& SetShapeFn(
Status (*fn)(shape_inference::InferenceContext*)) {
builder_.SetShapeFn(fn);
return *this;
}
const ::tensorflow::OpDefBuilder& builder() const { return builder_; }

private:
mutable ::tensorflow::OpDefBuilder builder_;
};

// 当通过链式规划构建好op后,再通过OpDefBuilderReceiver完成op的注册
// op.h
struct OpDefBuilderReceiver {
// To call OpRegistry::Global()->Register(…), used by the
// REGISTER_OP macro below.
// Note: These are implicitly converting constructors.
OpDefBuilderReceiver(
const OpDefBuilderWrapper& wrapper); // NOLINT(runtime/explicit)
constexpr OpDefBuilderReceiver(const OpDefBuilderWrapper&) {
} // NOLINT(runtime/explicit)
};

// op.cc,然后在OpDefBuilderReceiver构造函数内部完成OpDefBuilderWrapper的全局注册
OpDefBuilderReceiver::OpDefBuilderReceiver(
const OpDefBuilderWrapper& wrapper) {
OpRegistry::Global()->Register(
[wrapper](OpRegistrationData* op_reg_data) -> Status {
return wrapper.builder().Finalize(op_reg_data);
});
}

本文为大家系统讲解了TensorFlow的核心抽象op及其kernel实现。需要自定义op的具体场景,以及op的运行框架及若干技术细节。读罢此文,读者应该有如下几点收获:

•TensorFlow中op是编译期概念,kernel是运行期概念,两者各自的定义与注册方式,以及相应的映射逻辑。

•掌握TensorFlow的高阶玩法:自定义op。这将使你之前工作的不可能变为可能,由低效转化为高效。

•掌握op与kernel注册的宏定义来自何方,以及宏定义背后具体的运行框架。

1.《TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems》: https://arxiv.org/abs/1603.04467

2.Graphs and Sessions: https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/graphs.md

3.Adding a New Op: https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/extend/op.md

4.跨设备通信send/recv: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/sendrecv_ops.h

5.OpKernel definition: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/op_kernel.h

6.tensorflow源码解析之framework-resource: https://www.cnblogs.com/jicanghai/p/9535504.html

7.tensorflow源码解析之framework-op: https://www.cnblogs.com/jicanghai/p/9539513.html

**本文作者:李杰**
TF计算图从逻辑层来讲,由op与tensor构成。op是项点代表计算单元,tensor是边代表op之间流动的数据内容,两者配合以数据流图的形式来表达计算图。那么op对应的物理层实现是什么?TF中有哪些op,以及各自的适用场景是什么?op到底是如何运行的?接下来让我们一起探索和回答这些问题。
## 一、初识op
### 1.1 op定义
op代表计算图中的节点,是tf.Operation对象,代表一个计算单元。用户在创建模型和训练代码时,会创建一系列op及其依赖关系,并将这些op和依赖添加到tf.Graph对象中(一般为默认图)。比如:tf.matmul()就是一个op,它有两个输入tensor和一个输出tensor。
### 1.2 op分类
op的分类一般有多个视角,比如按是否内置划分、按工作类型划分。
按是否内置划分,一般分为:内置op和自定义op(见“二、自定义op”部分介绍)。
按工作类型划分,一般分为:常见数学op、数组op、矩阵op、有状态op、神经网络op、检查点op、队列与同步op、控制流op。TF白皮书对内置op的分类总结如下:

![](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/2ba4e499f2ec4c869067ccf14cfc41c7~tplv-k3u1fbpfcp-zoom-1.image)
  

### 1.3 op与kernel
op一般都有名称且代表一个抽象的计算过程。op可以设置若干属性,但这些属性必须在编译期提供或推理得到,因为它们用来实例化一个节点对象从而执行真正的计算。属性的经典用法就是拿来支持类型多态,比如两个浮点张量的矩阵乘法与两个整型张量的矩阵乘法。
kernel是op在指定设备类型(CPU/GPU)上的具体实现。TF二进制库通过注册机制定义了一系列op及对应的kernel实现,用户可以提供额外的op定义与kernel实现进行扩充。一般来说,一个op对应多个kernel实现。
接下来让我们一起用矩阵乘法MatMul算子的相关代码来理解op与kernel的关系(此处不必纠结代码细节,只需体会op与kernel关系即可):
```// 首先给出op注册的定义。其中输入输出支持泛型,其合法类型在Attr中进行枚举。// 代码位置 tensorflow1.15.5\tensorflow\core\ops\math_ops.ccREGISTER_OP("MatMul")    .Input("a: T")    .Input("b: T")    .Output("product: T")    .Attr("transpose_a: bool = false")    .Attr("transpose_b: bool = false")    .Attr(        "T: {bfloat16, half, float, double, int32, int64, complex64, "        "complex128}")    .SetShapeFn(shape_inference::MatMulShape);    // MatMul的实现,采用类模板机制// 代码位置 tensorflow1.15.5\tensorflow\core\kernels\matmul_op.cctemplate class MatMulOp : public OpKernel {  public:    explicit MatMulOp(OpKernelConstruction* ctx)      : OpKernel(ctx), algorithms_set_already_(false) {      OP_REQUIRES_OK(ctx, ctx->GetAttr("transpose_a", &transpose_a_));      OP_REQUIRES_OK(ctx, ctx->GetAttr("transpose_b", &transpose_b_));
      LaunchMatMul::GetBlasGemmAlgorithm(        ctx, &algorithms_, &algorithms_set_already_);      use_autotune_ = MatmulAutotuneEnable();    }  // 省略了很多代码…    private:    std::vector algorithms_;    bool algorithms_set_already_;    bool use_autotune_;    bool transpose_a_;    bool transpose_b_;};
// MatMul的op定义与kernel实现绑定处理// 代码位置 tensorflow1.15.5\tensorflow\core\kernels\matmul_op.cc#define REGISTER_CPU_EIGEN(T)  /*cpu与eigen组合对应实现*/                       \  REGISTER_KERNEL_BUILDER(                                                     \      Name("MatMul").Device(DEVICE_CPU).TypeConstraint("T").Label("eigen"), \      MatMulOp);
#define REGISTER_CPU(T)      /*cpu对应实现(eigen与非eigen)*/         \  REGISTER_KERNEL_BUILDER(                                          \      Name("MatMul").Device(DEVICE_CPU).TypeConstraint("T"),     \      MatMulOp); \  REGISTER_CPU_EIGEN(T);
#define REGISTER_GPU(T)     /*gpu对应实现(cublas与非cublas)*/       \  REGISTER_KERNEL_BUILDER(                                         \      Name("MatMul").Device(DEVICE_GPU).TypeConstraint("T"),    \      MatMulOp); \  REGISTER_KERNEL_BUILDER(Name("MatMul")                           \                              .Device(DEVICE_GPU)                  \                              .TypeConstraint("T")              \                              .Label("cublas"),                    \                          MatMulOp)```
## 二、自定义op
用户编写的模型训练代码一般由TF原生的op算子及其依赖关系组成,但有时候我们定义的计算逻辑在TF中没有相应的op实现。根据TensorFlow官网的建议,我们应当先组合python op算子或python函数进行尝试。完成尝试之后再决定要不要自定义op。
### 2.1 自定义op场景
一般来说,需要自定义op的场景有如下3个:
•用TF原生op组合来表达新计算逻辑的过程比较复杂或不可能
•用TF原生op组合来表达新计算逻辑,其计算性能较低
•在新版编译器中也较难实现op融合的计算逻辑需要我们手动实现融合
在此举个例子方便大家理解。假如我们要实现一个新计算实逻:中位数池化(median pooling),过程中要在滑动窗口不断求得中位数。检索TF文档没有发现对应op,因此我们先考虑用TF python op组合来实现它,果然通过**ExtractImagePatches** and **TopK**就可以实现这个功能。经测试前述组合方案并不是计算和存储高效的,因此我们就有必要将median pooling在一个op中进行高效实现。
### 2.2 自定义op流程
自定义op一般遵循5个基本步骤:
1.注册op,具体包括:指定名称、输入/输出声明、形状函数。
2.定义kernel(即op的实现)并与op绑定。一个op有多个kernel实现,具体由输入输出类型、硬件(CPU、GPU)决定。
3.创建python包装器,一般由op注册机制自动完成。
4.编写op的梯度计算函数(可选项)。
5.测试op,通过python测试较为方便,当然也可通过C++进行测试。
接下来我们就以官网最简单的ZeroOut同步式自定义op(继承OpKernel)为例,结合代码来讲述上述5个步骤。下面先给出步骤1和步骤2用C++实现的代码(官方推荐用bazel编译so文件):
```// 步骤1:注册opREGISTER_OP("ZeroOut").Input("to_zero: int32").Output("zeroed: int32").SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) {    c->set_output(0, c->input(0));    //c's input and output type is std::vector    return Status::OK();    });
// 步骤2:定义kernel(常规CPU设备),并把kernel与op绑定class ZeroOutOp : public OpKernel {public:    explicit ZeroOutOp(OpKernelConstruction* context) : OpKernel(context) {}
    void Compute(OpKernelContext* context) override {        // Grab the input tensor from OpKernelContext instance        const Tensor& input_tensor = context->input(0);         auto input = input_tensor.flat();
        // Create an output tensor        Tensor* output_tensor = NULL;        OP_REQUIRES_OK(context, context->allocate_output(0, input_tensor.shape(),            &output_tensor));    // OP_REQUIRES_OK第二个参数一般为方法调用,此处为输出张量分配内存空间        auto output_flat = output_tensor->flat();
        // Set all but the first element of the output tensor to 0.        const int N = input.size();        for (int i = 1; i < N; i++) {            output_flat(i) = 0;        }         // Preserve the first input value if possible.        if (N > 0) output_flat(0) = input(0);    }};
REGISTER_KERNEL_BUILDER(Name("ZeroOut").Device(DEVICE_CPU), ZeroOutOp);```
步骤3加载上述so文件(自动完成前后端op映射);步骤4是可选项,此处不需要;步骤5基于python api测试op功能。相应代码如下:
```import tensorflow as tfzero_out_module = tf.load_op_library('./zero_out.so')    # 加载so文件生成python modulewith tf.Session(''):  zero_out_module.zero_out([[1, 2], [3, 4]]).eval()
# Printsarray([[1, 0], [0, 0]], dtype=int32)```
### 2.3 高级话题
关于op的技术话题还有很多,我们在此简述一些要点:
1.如果实现了一个多线程CPU kernel,则可以利用work_sharder.h中的Shard函数。
2.大多数op以同步方式工作,只需继承OpKernel改写Compute()方法,且此方法必须线程安全。
3.如果一个op因为其它op的运行而阻塞,则这个op可以采用异步方式工作,继承AsyncOpKernel改写ComputeAsync()方法,且此方法必须线程安全。异步op最经典的例子就是跨设备通信send/recv pair中的RecvOp。
4.如果要为op配置一些静态属性,可使用Attr,它有一套特有的支持类型。典型应用是支持泛型。
5.实现GPU kernel有两部分内容:OpKernel和CUDA kernel,相应的加载代码。
6.编译自定义op,首先要配置头文件搜索路径与库文件搜索路径,接着指定编译和链接选项,最后还要确保ABI兼容性。
7.Resource(资源)代表相同设备上op共享的内容,比如:张量值、kv存储表、队列、读取器、网络连接等。代表资源的类必须继承ResourceBase,然后注册ResourceHandleOp生成资源句柄,普通op以resouce类型的Input进行引入。
## 三、op工作原理
### 3.1 op运行框架
整体来看,op与kernel都有其结构描述与统一的注册管理中心。而OpDefBuilder有两个包装类OpDefBuilderWrapper和OpDefBuilderReceiver,前者支持op构建的链式语法,后者接受op构建结果并进行注册。众所周知,op是编译期概念,而kernel是运行期概念,在AI编译器的后端处理流程中会进行op的算子选择,此过程会基于一系列策略为op匹配最合适的kernel实现。

![](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/419cd70db0da46b090f740d7245ee836~tplv-k3u1fbpfcp-zoom-1.image)
  

### 3.2 若干技术细节
首先,我们来看一下大家在使用TensorFlow过程中经常碰到的libtensorflow_framework.so。按照tf1.15.5/tensorflow/BUILD中的描述,libtensorflow_framework.so定义了op和kernel的注册机制而不涉及具体实现。
```// rootdir=tensorflow1.15.5// ${rootdir}/tensorflow/BUILD/*# A shared object which includes registration mechanisms for ops and# kernels. Does not include the implementations of any ops or kernels. Instead,# the library which loads libtensorflow_framework.so# (e.g. _pywrap_tensorflow_internal.so for Python, libtensorflow.so for the C# API) is responsible for registering ops with libtensorflow_framework.so. In# addition to this core set of ops, user libraries which are loaded (via# TF_LoadLibrary/tf.load_op_library) register their ops and kernels with this# shared object directly.*/tf_cc_shared_object(    name = "tensorflow_framework",    framework_so = [],    linkopts = select({        "//tensorflow:macos": [],        "//tensorflow:windows": [],        "//tensorflow:freebsd": [            "-Wl,--version-script,$(location //tensorflow:tf_framework_version_script.lds)",            "-lexecinfo",        ],        "//conditions:default": [            "-Wl,--version-script,$(location //tensorflow:tf_framework_version_script.lds)",        ],    }),    linkstatic = 1,    per_os_targets = True,    soversion = VERSION,    visibility = ["//visibility:public"],    deps = [        "//tensorflow/cc/saved_model:loader_lite_impl",        "//tensorflow/core:core_cpu_impl",        "//tensorflow/core:framework_internal_impl",    /* 展开此target进行查看 */        "//tensorflow/core:gpu_runtime_impl",        "//tensorflow/core/grappler/optimizers:custom_graph_optimizer_registry_impl",        "//tensorflow/core:lib_internal_impl",        "//tensorflow/stream_executor:stream_executor_impl",        "//tensorflow:tf_framework_version_script.lds",    ] + tf_additional_binary_deps(),)
// ${rootdir}/tensorflow/core/BUILDtf_cuda_library(    name = "framework_internal_impl",    srcs = FRAMEWORK_INTERNAL_PRIVATE_HEADERS + glob(   // 可以查看FRAMEWORK_INTERNAL_PRIVATE_HEADERS内容        [            "example/**/*.cc",            "framework/**/*.cc",            "util/**/*.cc",            "graph/edgeset.cc",            "graph/graph.cc",            "graph/graph_def_builder.cc",            "graph/node_builder.cc",            "graph/tensor_id.cc",            "graph/while_context.h",            "graph/while_context.cc",        ],    // 省略了诸多代码)
// FRAMEWORK_INTERNAL_PRIVATE_HEADERS的内容FRAMEWORK_INTERNAL_PRIVATE_HEADERS =  [    "graph/edgeset.h",    "graph/graph.h",    "graph/graph_def_builder.h",    "graph/node_builder.h",    "graph/tensor_id.h",] + glob(    [        "example/**/*.h",        "framework/**/*.h",   // 这里就是重点,查看${rootdir}/tensorflow/core/framework/op.h和opkernel.h        "util/**/*.h",    ]) 
// 先来看op.h#define REGISTER_OP(name) REGISTER_OP_UNIQ_HELPER(__COUNTER__, name)#define REGISTER_OP_UNIQ_HELPER(ctr, name) REGISTER_OP_UNIQ(ctr, name)#define REGISTER_OP_UNIQ(ctr, name)                                          \  static ::tensorflow::register_op::OpDefBuilderReceiver register_op##ctr    \      TF_ATTRIBUTE_UNUSED =                                                  \          ::tensorflow::register_op::OpDefBuilderWrapper(name)              // 再来看看opkernel.h#define REGISTER_KERNEL_BUILDER(kernel_builder, …) \  REGISTER_KERNEL_BUILDER_UNIQ_HELPER(__COUNTER__, kernel_builder, __VA_ARGS__)
#define REGISTER_KERNEL_BUILDER_UNIQ_HELPER(ctr, kernel_builder, …) \  REGISTER_KERNEL_BUILDER_UNIQ(ctr, kernel_builder, __VA_ARGS__)
#define REGISTER_KERNEL_BUILDER_UNIQ(ctr, kernel_builder, …)        \  constexpr bool should_register_##ctr##__flag =                      \      SHOULD_REGISTER_OP_KERNEL(#__VA_ARGS__);                        \  static ::tensorflow::kernel_factory::OpKernelRegistrar              \      registrar__body__##ctr##__object(                               \          should_register_##ctr##__flag                               \              ? ::tensorflow::register_kernel::kernel_builder.Build() \              : nullptr,                                              \          #__VA_ARGS__,                                               \          [](::tensorflow::OpKernelConstruction* context)             \              -> ::tensorflow::OpKernel* {                            \            return new __VA_ARGS__(context);                          \          });```
参照上述同样的流程,我们可以发现libtensorflow.so中涉及op与kernel的具体实现,同时也包括Session的具体实现。
最后,我们再来讲讲REGISTER_OP宏背后的具体原理。我们在上面已经给出了此宏的定义,此处针对它的实现展开谈谈:
```// 先来看op.h#define REGISTER_OP(name) REGISTER_OP_UNIQ_HELPER(__COUNTER__, name)#define REGISTER_OP_UNIQ_HELPER(ctr, name) REGISTER_OP_UNIQ(ctr, name)#define REGISTER_OP_UNIQ(ctr, name)                                          \  static ::tensorflow::register_op::OpDefBuilderReceiver register_op##ctr    \      TF_ATTRIBUTE_UNUSED =                                                  \          ::tensorflow::register_op::OpDefBuilderWrapper(name)
// REGISTER_OP的一般用法如下REGISTER_OP("ZeroOut")    .Input("to_zero: int32")    .Output("zeroed: int32")    .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) {      c->set_output(0, c->input(0));      return Status::OK();    });
// op定义的链式规则是通过OpDefBuilderWrapper类实现的class OpDefBuilderWrapper { public:  explicit OpDefBuilderWrapper(const char name[]) : builder_(name) {}
  OpDefBuilderWrapper& Input(string spec) {    builder_.Input(std::move(spec));    return *this;                        // 显而易见,调用Input仍然返回OpDefBuilderWrapper本身  }  OpDefBuilderWrapper& Output(string spec) {    builder_.Output(std::move(spec));    return *this;  }
  OpDefBuilderWrapper& SetShapeFn(      Status (*fn)(shape_inference::InferenceContext*)) {    builder_.SetShapeFn(fn);    return *this;  }  const ::tensorflow::OpDefBuilder& builder() const { return builder_; }
 private:  mutable ::tensorflow::OpDefBuilder builder_;};
// 当通过链式规划构建好op后,再通过OpDefBuilderReceiver完成op的注册// op.hstruct OpDefBuilderReceiver {  // To call OpRegistry::Global()->Register(…), used by the  // REGISTER_OP macro below.  // Note: These are implicitly converting constructors.  OpDefBuilderReceiver(      const OpDefBuilderWrapper& wrapper);  // NOLINT(runtime/explicit)  constexpr OpDefBuilderReceiver(const OpDefBuilderWrapper&) {  }  // NOLINT(runtime/explicit)};
// op.cc,然后在OpDefBuilderReceiver构造函数内部完成OpDefBuilderWrapper的全局注册OpDefBuilderReceiver::OpDefBuilderReceiver(    const OpDefBuilderWrapper& wrapper) {  OpRegistry::Global()->Register(      [wrapper](OpRegistrationData* op_reg_data) -> Status {        return wrapper.builder().Finalize(op_reg_data);      });}```
## 四、总结
本文为大家系统讲解了TensorFlow的核心抽象op及其kernel实现。需要自定义op的具体场景,以及op的运行框架及若干技术细节。读罢此文,读者应该有如下几点收获:
•TensorFlow中op是编译期概念,kernel是运行期概念,两者各自的定义与注册方式,以及相应的映射逻辑。
•掌握TensorFlow的高阶玩法:自定义op。这将使你之前工作的不可能变为可能,由低效转化为高效。
•掌握op与kernel注册的宏定义来自何方,以及宏定义背后具体的运行框架。
## 参考资料
1.《TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems》: https://arxiv.org/abs/1603.04467
2.Graphs and Sessions: https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/graphs.md
3.Adding a New Op: https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/extend/op.md
4.跨设备通信send/recv: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/sendrecv_ops.h
5.OpKernel definition: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/op_kernel.h
6.tensorflow源码解析之framework-resource: https://www.cnblogs.com/jicanghai/p/9535504.html
7.tensorflow源码解析之framework-op: https://www.cnblogs.com/jicanghai/p/9539513.html