【机器学习】svm
阅读原文时间:2023年07月09日阅读:1

机器学习算法——SVM

目录

​ 在线性分类任务中,对于同一个数据集,可能有多个分离超平面。例如在下图中,H2和H3都能够将白色点和黑色点分离开来,那么在这些分界面中,是否存在一个最优的分界面?一个直观的想法是,离所有点都比较远的分割面会是一个好的分割面。可以证明,这样的最优分割面是唯一的。因此SVM的目标就变成了寻找最大间隔分离超平面。

2.1 几何间隔和函数间隔

​ 对于数据集\(\{x_i, y_i\}_{i=1}^N, y_i \in\{-1, +1\}\),分类器\(f(x)=w^Tx + b\),任意点\(x_i\)到分割面的几何间隔为:

\[d_i = \frac{y_i (w^T x_i + b)}{||w||}=y_i \left(\frac{w^T}{||w||}x + \frac{b}{||w||}\right), d=\min_{i\in\{1, 2, …, N\}} d_i \label{geo_dist}\tag{1}
\]

从公式可知,如果成比例地改变\(w\)和\(b\),并不会影响\(d_i\)的值。定义函数间隔:

\[\hat{d}_i = ||w||d_i = y_i \left(w^T x_i+b\right), \hat{d}=\min_{i\in\{1, 2, …, N\}} \hat{d}_i \label{func_dist}\tag{2}
\]

2.2 SVM原问题

​ 最大间隔分离超平面问题可以表述为:

\[\max_{w,b} d \label{p1}\tag{3}\\
s.t \quad d_i = y_i \left(\frac{w^T}{||w||}x + \frac{b}{||w||}\right)\geq d, \forall i \in\{1, 2, …,N\}
\]

将几何间隔替换为函数间隔,公式\(\ref{p1}\)可以写作:

\[\max_{w,b} \frac{\hat{d}}{||w||}\label{p2}\tag{4}\\
s.t \quad y_i \left(w^T x_i+b\right)\geq ||w||d = \hat{d} , \forall i \in\{1, 2, …,N\}
\]

事实上函数间隔的取值并不会影响问题\(\ref{p2}\)的最优解(等比例放缩\(w\)和\(b\)不会影响不等式约束),取函数间隔\(\hat{d} = 1\),公式\(\ref{p2}\)变为:

\[\min_{w,b} \frac{1}{2}w^Tw \label{p3}\tag{5}\\
s.t \quad y_i (w^Tx_i+b)\geq 1, \forall i \in\{1, 2, …,N\}
\]

​ 然而在某些情况下,最小函数间隔是1并不能成立(非线性可分情况),为了处理这种情形,引入松弛变量\(\xi_i\geq 0\),约束条件变为了函数间隔加上松弛变量要大于1,此时问题\(\ref{p3}\)变为:

\[\min_{w,b} \frac{1}{2}w^Tw+C\sum_{i=1}^N\xi_i \label{p4}\tag{6}\\
s.t \quad y_i (w^Tx_i+b)\geq 1 - \xi_i\\ \xi_i \geq 0, \quad \forall i \in\{1, 2, …,N\}
\]

2.3 SVM对偶问题

​ 写出问题\(\ref{p4}\)的拉格朗日函数:

\[\mathcal{L}(w, b, \xi, \alpha, \mu) = \frac{1}{2}w^Tw + C\sum_{i=1}^N\xi_i + \sum_{i=1}^N \alpha_i(1-\xi_i - y_i(w^T x_i + b)) - \sum_{i=1}^N \mu_i \xi_i, \alpha \geq 0 \label{Lagrangrian}\tag{7}
\]

原始问题为:\(\theta_p = \min_{w,b,\xi} \max_{\alpha} \mathcal{L}(w, b,\xi, \alpha)\),对偶问题为:\(\theta_d = \max_{\alpha} \min_{w,b,\xi}\mathcal{L}(w,b,\xi,\alpha)\)。求解对偶问题:

\[\nabla_w \mathcal{L}(w, b,\xi, \alpha) = w - \sum_{i=1}^N \alpha_i y_i x_i \label{grad}\tag{8}\\
\nabla_b \mathcal{L}(w, b,\xi, \alpha) = -\sum_{i=1}^N \alpha_i y_i \\
\nabla_{\xi_i} \mathcal{L}(w, b,\xi, \alpha) = C-\alpha_i-\mu_i , \forall i\in \{1, 2, .., N\}
\]

根据KKT条件得到:

\[w = \sum_{i=1}^N \alpha_i y_i x_i \label{kkt}\tag{9}\\
\sum_{i=1}^N \alpha_i y_i = 0 \\
C-\alpha_i - \mu_i = 0 \\
\alpha_i \geq 0 \\
\mu_i \geq 0\\
\alpha_i (1-\xi_i - y_i (w^Tx_i+b)) = 0 \\
\mu_i \xi_i = 0 \\
\xi_i \geq 0 \\
y_i (w^Tx_i +b)\geq 1 - \xi_i
\]

将KKT条件代入到对偶问题可得:

\[\max_\alpha \frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^N \alpha_i \alpha_j y_i y_j x_i^Tx_j - \sum_{i=1}^N \alpha_i \label{p5}\tag{10}\\
s.t \quad \sum_{i=1}^N \alpha_i y_i = 0\\
0\leq \alpha_i \leq C , \quad \forall i \in \{1, 2, …, N\}
\]

同时观察KKT条件可以得到:

  • 如果\(\alpha_i < C\),一定有\(\xi_i = 0\)(\(\mu_i = C -\alpha_i \neq 0 \Longrightarrow \xi_i = 0\)),支持向量\(x_i\)恰好落在边界
  • 如果\(\alpha_i = C, 0<\xi_i < 1\),则\(x_i\)分类正确,在间隔边界与超平面之间
  • 如果\(\alpha_i = C, \xi_i = 1\),则\(x_i\)落在超平面上
  • 如果\(\alpha_i = C, \xi_i > 1\),则\(x_i\)分类错误

2.4 SMO算法

2.4.1 更新公式

​ 问题\(\ref{p5}\)仍然是一个二次规划问题,可以用一般的QP算法解决。但是对于SVM模型,有一种更加快速的优化算法。类似于坐标下降,SMO每次固定其他变量,只优化两个变量。

​ 假设在问题\(\ref{p5}\)中,选择优化变量\(\alpha_1, \alpha_2\)。等式约束可以改写为:

\[\alpha_1 y_1 + \alpha_2 y_2 = -\sum_{i=3}^N \alpha_i y_i \triangleq \zeta \label{alpha1_alpha2}\tag{11}\\
\alpha_2 = \zeta y_2 -\alpha_1 y_1 y_2
\]

将待优化的变量分离出来,并将\(\alpha_2\)替换掉:

\[\begin{aligned}
g(\alpha_1, \alpha_2) =& \frac{1}{2}\alpha_1^2 K_{11} + \frac{1}{2} \alpha_2^2 K_{22} + \alpha_1 \alpha_2 y_1 y_2 K_{12} + \alpha_1 y_1\sum_{i=3}^N \alpha_i y_i K_{1i} + \alpha_2 y_2\sum_{i=3}^N \alpha_i y_i K_{2i} \\
&+ \frac{1}{2}\sum_{i=3}^{N}\sum_{j=3}^N \alpha_i \alpha_j y_i y_j K_{ij} -(\alpha_1 + \alpha_2) - \sum_{i=3}^N \alpha_i \\
=& \frac{1}{2}\alpha_1^2 K_{11} + \frac{1}{2}\left( \zeta y_2 - \alpha_1 y_1 y_2\right)^2 K_{22} + \alpha_1 \left( \zeta y_2 - \alpha_1 y_1 y_2\right) y_1 y_2 K_{12}\\
&+ \alpha_1 y_1 v_1 + \left( \zeta y_2 - \alpha_1 y_1 y_2\right)y_2 v_2 -\alpha_1 - \zeta y_2 + \alpha_1 y_1 y_2 + \mathrm{const} \\
=& \frac{1}{2} \left( K_{11} - 2K_{12} + K_{22}\right)\alpha_1^2 + \left[\zeta y_1(K_{12} - K_{22}) + y_1(v_1 -v_2)+(y_1 y_2 - 1) \right]\alpha_1 + \mathrm{const}
\end{aligned}\label{alpha1}\tag{12}
\]

因此有:

\[\frac{\partial g}{\partial \alpha_1} = (K_{11} - 2K_{12}+K_{22})\alpha_1 + \zeta y_1(K_{12} - K_{22}) + y_1(v_1 -v_2)+(y_1 y_2 - 1) \label{grad_alpha1}\tag{13}
\]

其中:

\[v_1 = \sum_{i=3}^N \alpha_i y_i K_{1i} = \sum_{i=1}^N \alpha_i^{old} y_i K_{1i} - \alpha_1^{old}y_1 K_{11} - \alpha_2^{old}y_2 K_{12} = f(x_1) - \alpha_1^{old}y_1 K_{11} - \alpha_2^{old}y_2 K_{12} - b \label{v}\tag{14}\\
v_2 = \sum_{i=3}^N \alpha_2 y_i K_{2i} = \sum_{i=1}^N \alpha_i^{old} y_i K_{2i} - \alpha_1^{old}y_1 K_{21} - \alpha_2^{old}y_2 K_{22} = f(x_2) - \alpha_1^{old}y_1 K_{21} - \alpha_2^{old}y_2 K_{22} - b
\]

所以:

\[\begin{aligned}
v_1 - v_2 &= f(x_1) - f(x_2) - \alpha_1^{old}y_1(K_{11}-K_{21}) - (\zeta y_1 - \alpha_1 y_1 y_2)y_2(K_{12}-K_{22}) \\
&= f(x_1) - f(x_2) - \alpha_1^{old}y_1(K_{11} - 2K_{12} + K_{22}) - \zeta y_1 y_2 (K_{12} - K_{22})
\end{aligned}\label{diff_v}\tag{15}
\]

带入到公式\(\ref{grad_alpha1}\)得到:

\[\begin{aligned}
\frac{\partial g}{\partial \alpha_1} &= (K_{11} - 2K_{12}+K_{22})\alpha_1^{new} + \zeta y_1(K_{12} - K_{22}) \\
&+ y_1( f(x_1) - f(x_2) - \alpha_1^{old}y_1(K_{11} - 2K_{12} + K_{22}) - \zeta y_1 y_2 (K_{12} - K_{22}))+(y_1 y_2 - 1)\\
&= (K_{11} - 2K_{12}+K_{22})(\alpha_1^{new}-\alpha_1^{old}) + y_1 ((f(x_1) - y_1)-(f(x_2) -y_2)) \\
&= (K_{11} - 2K_{12}+K_{22})(\alpha_1^{new}-\alpha_1^{old}) - y_1 (E_1-E_2)
\end{aligned}\label{grad_alpha1_2}\tag{16}
\]

令该导数为0,得到:

\[\alpha_1^{new} = \alpha_1^{old} + \frac{y_1(E_1-E_2)}{K_{11} - 2K_{12}+K_{22}}\label{alpha1_new}\tag{17}
\]

2.4.2 裁剪

现在考虑对偶问题中的框约束。\(\alpha_1, \alpha_2\)的等式约束\(\ref{alpha1_alpha2}\)可以写作:

\[\alpha_1^{new} y_1 + \alpha_2^{new} y_2 = \zeta = \alpha_1^{old} y_1 + \alpha_2^{old} y_2 \label{old_new}\tag{18}
\]

对\(y_1, y_2\)分类讨论:

  • 当\(y_1 \neq y_2\)时,\(\alpha_{1}^{new}-\alpha_2^{new} = k = \alpha_1^{old}-\alpha_2^{old}\)

    • \(k>0\Longrightarrow \alpha_1 \in \left[k, C\right]\)
    • \(k < 0\Longrightarrow \alpha_1 \in \left[0, C+k\right]\)

    因此有\(L = \max\{0, \alpha_1^{old}-\alpha_2^{old}\}, H = \min\{C, C + \alpha_1^{old}-\alpha_2^{old}\}\)

  • 当\(y_1 = y_2\)时,\(\alpha_{1}^{new}+\alpha_2^{new} = k = \alpha_1^{old}+\alpha_2^{old}\),同上一种情况可得\(L = \max\{0, \alpha_1^{old}+\alpha_2^{old}-C\}, H = \min\{C, \alpha_1^{old}+\alpha_2^{old}\}\)

对\(\alpha_1^{new}\)的裁剪过程如下:

\[\begin{equation}\label{clip}\tag{19}
\alpha_1^{new,cliped}=
\begin{cases}
H&,\alpha_1^{new}\geq H \\
\alpha_1^{new}&, L<\alpha_1^{new}< H\\
L&, \alpha_1^{new}\leq L
\end{cases}
\end{equation}
\]

在计算出\(\alpha_1^{new}\)之后,代入\(\ref{old_new}\)可以得到:

\[\alpha_2^{new} = \alpha_2^{old}+y_1 y_2 (\alpha_1^{old}-\alpha_2^{old}) \label{alpha2_new}\tag{20}
\]

2.4.3 优化变量的选择

\(\alpha_i, \alpha_j\)的选择。在选择第一个变量\(\alpha_i\)时,找出违反KKT条件最严重的,这样能加快优化过程。KKT条件具体是:

\[\begin{aligned}
\alpha_{i} &=0 \Leftrightarrow y_{i} f\left(x_{i}\right) \geqslant 1 \\
0<\alpha_{i} &<C \Leftrightarrow y_{i} f\left(x_{i}\right)=1 \\
\alpha_{i} &=C \Leftrightarrow y_{i} f\left(x_{i}\right) \leqslant 1
\end{aligned}
\]

其中\(f\left(x_{i}\right)=\sum_{j=1}^{N} \alpha_{j} y_{j} K\left(x_{i}, x_{j}\right)+b\)。在检验时,首先在支持向量中寻找,即\(0<\alpha_{i} <C\),如果支持向量都满足KKT条件,则在全部数据集中寻找。在给定了第一个变量时,第二个变量\(\alpha_j\)的选择要使\(\alpha_j\)有足够大的变化,即使\(|E_i -E_j|\)最大。

2.4.4 偏移\(b\)和误差\(E_i\)的更新

​ 根据KKT条件可知,当向量\(x_i\)是支持向量时有\(y_{i} f\left(x_{i}\right)=1\)。在计算完\(\alpha_1^{new}\)之后,如果\(0<\alpha_1^{new}<C\):

\[\sum_{i=1}^N y_i \alpha_i K_{1i} + b= y_1
\]

于是有:

\[b = y_1 - \sum_{i=1}^N y_i \alpha_i^{old} K_{1i} + y_1K_{11}(\alpha_1^{old}-\alpha_1^{new})+y_2 K_{12}(\alpha_2^{old} - \alpha_2^{new})
\]

代入\(E_1 = y_1 - f(x_1) = y_1 - \sum_{i=1}^N \alpha_i^{old}y_i K_{1i}-b^{old}\)得到:

\[b^{new} = E_1 + y_1K_{11}(\alpha_1^{old}-\alpha_1^{new})+y_2 K_{12}(\alpha_2^{old} - \alpha_2^{new}) + b^{old}
\]

同样地当\(0<\alpha_2^{new}<C\),有:

\[b_{2}^{\text {new }}=E_{2}+y_{1} K_{12}\left(\alpha_{1}^{\text {old }}-\alpha_{1}^{\text {new }}\right)-y_{2} K_{22}\left(\alpha_{2}^{\text {old }}-\alpha_{2}^{\text {new }}\right)+b^{\text {old }}
\]

当\(\alpha_1^{new}, \alpha_2^{new}\)是0或者C时,选择\(\frac{b_1^{new} + b_2^{new}}{2}\)作为更新值(因为在\([b_1^{new}, b_2^{new}]\)中的数都能满足KKT条件,选中点作为近似)

​ 当更新完\(\alpha_1, \alpha_2, b\)之后,误差\(E_i\)更新为:

\[E_{i}^{\text {new }}=y_i - \sum_{S} y_{j} \alpha_{j} K\left(x_{i}, x_{j}\right)+b^{\text {new }}
\]

其中\(S\)是支持向量的集合。

SVM有很多实现方式:

  • hingle loss;可以证明,线性SVM问题和采用hingle loss的线性分类器是等价的,因此可以使用梯度下降方法进行优化
  • SMO;简单的实现是选择一个符合条件的\(\alpha_i\),然后随机挑选一个\(\alpha_j\)。为了加快训练速度,可以根据某些准则合理地选择
  • 二次优化;直接使用QP求解器

本文实现了simple smo,代码如下:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
# -*- coding: utf-8 -*-

import numpy as np
# 裁剪函数
def clip(x, L, H):
    if(x < L):
        x = L
    elif(x > H):
        x = H
    return x
# 随机选择数字
def rand_select(i, m):
    j = i
    while(j == i): j = int(np.random.uniform(0, m))
    return j

class SVM():
    def __init__(self, kernel="linear", C = 1.0, sigma=1.0, **kwargs):
        # 只支持线性核和高斯核
        if (kernel not in ['linear', 'gaussian']):
            raise ValueError("Now only support linear and gaussian kernel")
        elif kernel == "linear":
            kernel_fn = Kernel.linear()
        elif kernel == "gaussian":
            kernel_fn = Kernel.gaussian(sigma)

        self.kernel_method = kernel
        self.kernel = kernel_fn

        self.sigma = sigma
        self.C = C

        self.w , self.b = None, None
        self.n_sv = -1
        self.sv_x, self.sv_y, self.alphas = None, None, None
        self.eps = 1e-6

    # 预测函数, y = \sum_(i in S) alpha_i y_i K(x_i, x) + b
    def predict(self, x):
        wx = self.b
        for i in range(len(self.sv_x)):
            wx += self.alphas[i] * self.sv_y[i] * self.kernel(self.sv_x[i], x)
        return wx

    '''
    svm训练,常见的方法有以下几种:
    1. simple_smo
    2. smo
    3. cvopt
    4. hinge loss
    目前只实现了simple_smo
    '''
    def train(self, X, y, maxIter = 500):
        # 计算核矩阵
        if(self.kernel_method == "linear"):
            K = np.dot(X, X.T)
        elif (self.kernel_method == "gaussian"):
            d2 = np.sum(X ** 2, axis = -1, keepdims= True) - 2 * np.dot(X, X.T) + np.sum(X ** 2, axis = -1,)
            K = np.exp(- 0.5 * d2 / self.sigma)

        # 优化
        alphas, b = self._SMO(K, y, maxIter = maxIter)

        # 计算支持向量
        idx = [i for i in range(len(alphas)) if alphas[i] > self.eps]
        self.n_sv = len(idx)
        self.sv_x = X[idx,:]
        self.alphas = alphas[idx]
        if self.kernel_method == "linear":
            self.w = np.sum((self.alphas * y[idx]).reshape(-1, 1) * X[idx,:], axis = 0)
        self.b = b

    def _SMO(self, K, y, tol = 0.001, maxIter = 40):
        print("begin SMO...")
        m = len(y)
        self.alphas, self.b = np.zeros(m), 0.
        y = y.reshape(1, -1)

        niter = 0
        while (niter < maxIter):
            # select alpha_i, alpha_j
            changed = 0
            for i in range(m):
                # 在外层循环中,选择一个违反了KKT条件的alpha_i
                yi, ai_old = y[0][i], self.alphas[i].copy()
                Ei = np.dot(self.alphas * y , K[i].T) + self.b - yi
                if ((yi * Ei < -tol) and (ai_old < self.C)) or ((yi * Ei > tol) and (ai_old > 0)):
                    # 随机找内层的alpha_j
                    j = rand_select(i, m)
                    yj, aj_old = y[0][j], self.alphas[j].copy()
                    Ej = np.dot(self.alphas * y, K[j].T) + self.b - yj

                    # 更新 alpha_j
                    eta = K[i, i] + K[j, j] - 2 * K[i, j]
                    if(eta <= 0): continue;
                    aj_new = aj_old + yj * (Ei - Ej) / eta

                    # 裁剪 alpha_j
                    if yi != yj:
                        L, H = max(0, aj_old - ai_old), min(self.C, self.C + aj_old - ai_old)
                    else:
                        L, H = max(0, aj_old + ai_old - self.C), min(self.C, aj_old + ai_old)
                    if H - L == 0:
                        continue
                    aj_new = clip(aj_new, L, H)

                    # 更新alpha_i
                    s = yi * yj
                    delta_j = aj_new - aj_old
                    if(abs(delta_j) < self.eps): continue;
                    ai_new = ai_old - s * delta_j
                    delta_i = ai_new - ai_old

                    # 更新b
                    bi = self.b - Ei - yi * delta_i * K[i, i] - yj * delta_j * K[i, j]
                    bj = self.b - Ej - yi * delta_i * K[i, j] - yj * delta_j * K[j, j]

                    if 0 < ai_new < self.C:
                        self.b = bi
                    elif 0 < aj_new < self.C:
                        self.b = bj
                    else:
                        self.b = (bi + bj) / 2
                    self.alphas[i], self.alphas[j] = ai_new, aj_new
                    changed += 1
            if (changed == 0):
                niter +=1;
            else:
                niter = 0

        print("Finish SMO...")
        return self.alphas, self.b

'''
核函数的单独实现,后期可以在里面添加
'''
class Kernel(object):
    # 线性核
    @staticmethod
    def linear():
        return lambda X, y: np.inner(X, y)

    # 高斯核
    @staticmethod
    def gaussian(sigma):
        return lambda X, y: np.exp(-np.sqrt(np.linalg.norm(X - y) ** 2 / (2 * sigma)))

测试代码:

#!/usr/bin/env python
# -*- coding:utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Circle

# generate data

anchors = np.array([[-1, -1], [1, 1]]) * 0.5
n1 = np.random.random((30, 2))
n2 = np.random.random((30, 2))
X1 = anchors[0] - n1
X2 = anchors[1] + n2
y1 = np.array([-1]*30)
y2 = np.array([1]*30)

print("trianing...")
X = np.vstack((X1, X2))
y = np.hstack((y1, y2))

idx = np.array(range(len(y)))
np.random.shuffle(idx)
X = X[idx,:]
y = y[idx]

from svm import *
model = SVM(C = 0.6, kernel="linear")
model.train(X, y, maxIter = 40)

print(model.n_sv)
print(model.sv_x)
print(model.sv_y)

xx = np.array([-1, 1])
yy = -model.w[0] / model.w[1] * xx - model.b / model.w[1]
fig = plt.figure()
ax = fig.add_subplot(111)
for i in range(len(y)):
    if y[i] == -1:
        ax.scatter(X[i][0], X[i][1], marker = "o", color = "red")
    else:
        ax.scatter(X[i][0], X[i][1], marker="x", color="green")

for sv_x in model.sv_x:
    cir1 = Circle(xy = (sv_x[0], sv_x[1]), radius=0.1, alpha=0.5)
    ax.add_patch(cir1)

ax.plot(xx, yy, color = "orange")
plt.show()

测试结果如下:

  • LRU缓存;在SVM+SMO中的实现中,核矩阵的计算成为了很大的开销。如果预先将核矩阵计算好,空间复杂度为\(O(N^2)\),如果边用边计算,又会因为重复计算增加开销。考虑到在实际计算中,用到的样本仅为支持向量附近的一些数据点,因此用两个cache保存核和误差,在对参数更新之后更新缓存即可。

  • 冷热数据分离;在更新参数时,优先更新支持向量(热数据)对应的\(\alpha\)(即\(0<\alpha<C\)),在没有这样的点时,再全局(冷数据)寻找进行更新。

手机扫一扫

移动阅读更方便

阿里云服务器
腾讯云服务器
七牛云服务器

你可能感兴趣的文章