E - Young Maids
Time limit : 2sec / Memory limit : 256MB
Score : 800 points
Let N be a positive even number.
We have a permutation of (1,2,…,N), p=(p1,p2,…,pN). Snuke is constructing another permutation of (1,2,…,N), q, following the procedure below.
First, let q be an empty sequence. Then, perform the following operation until p becomes empty:
When p becomes empty, q will be a permutation of (1,2,…,N).
Find the lexicographically smallest permutation that can be obtained as q.
Input is given from Standard Input in the following format:
N
p1 p2 … pN
Print the lexicographically smallest permutation, with spaces in between.
4
3 2 4 1
3 1 2 4
The solution above is obtained as follows:
p
q
(3,2,4,1)
()
↓
↓
(3,1)
(2,4)
↓
↓
()
(3,1,2,4)
2
1 2
1 2
8
4 6 3 2 8 5 7 1
3 1 2 7 4 6 8 5
The solution above is obtained as follows:
p
q
(4,6,3,2,8,5,7,1)
()
↓
↓
(4,6,3,2,7,1)
(8,5)
↓
↓
(3,2,7,1)
(4,6,8,5)
↓
↓
(3,1)
(2,7,4,6,8,5)
↓
↓
()
(3,1,2,7,4,6,8,5)
//题意:给出一个 p 序列,一个 q 序列,p 中有 1 -- n 的某种排列,q初始为空,现要求可以每次选两个相邻的数,移动到 q 中,要操作到 p 为空,并且要求 q 序列字典序最小
题解:相当难想到的一个题,假如有一个区间 l,r,肯定是,选择这区间内与 l 奇偶相同的,并且最小的作为开头,这样才能保证字典序最小,然后第二个数,应该为选的数右边的,并且与 l 奇偶性不同的,作为第二个,也要保证字典序最小,这部分是标准RMQ问题,随便用什么。然后,区间被分割成最多三块,用优先队列保存区间即可,排队顺序为区间内与左端点奇偶相同的位置上值小的先出队 n*lgn
还是难以想到啊,很好的题
# include
# include
# include
# include
# include
# include
# include
# include
# define eps 1e-
# define MOD
# define INF 0x3f3f3f3f
inline int Scan() {
int x=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-; ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-''; ch=getchar();}
return x*f;
}
inline void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int MX=;
//Code begin….
int n;
int dat[MX];
int ans[MX];
int mn[MX];
int st[][MX][];
struct Qu
{
int l,r;
int dex; //zui xiao ,,biao hao
bool operator < (const Qu b) const{
return dat[dex]>dat[b.dex];
}
};
void Init()
{
mn[]=-;
dat[]=INF;
for (int i=;i<=n;i++)
{
if ((i&(i-))==) mn[i]=mn[i-]+;
else mn[i]=mn[i-];
if (i&) st\[\]\[i\]\[\]=i;
else st\[\]\[i\]\[\]=i;
}
for (int j=;(<<j)<=n;j++)
{
for (int i=;(i+(<<j)-)<=n;i++)
{
if (dat\[st\[\]\[i\]\[j-\]\]<=dat\[st\[\]\[i+(<<(j-))\]\[j-\]\])
st\[\]\[i\]\[j\] = st\[\]\[i\]\[j-\];
else
st\[\]\[i\]\[j\] = st\[\]\[i+(<<(j-))\]\[j-\];
if (dat\[st\[\]\[i\]\[j-\]\]<=dat\[st\[\]\[i+(<<(j-))\]\[j-\]\])
st\[\]\[i\]\[j\] = st\[\]\[i\]\[j-\];
else
st\[\]\[i\]\[j\] = st\[\]\[i+(<<(j-))\]\[j-\];
}
}
}
int st_cal(int l,int r,int same)
{
int k = mn[r-l+];
int c;
if (same) c=l%;
else c=(l+)%;
if (dat\[st\[c\]\[l\]\[k\]\]<=dat\[st\[c\]\[r-(<<k)+\]\[k\]\])
return st\[c\]\[l\]\[k\];
else
return st\[c\]\[r-(<<k)+\]\[k\];
}
int main()
{
scanf("%d",&n);
for (int i=;i<=n;i++)
dat[i] = Scan();
Init();
priority_queue
Q.push((Qu){,n,st_cal(,n,)});
int pp=;
for (int i=;i<=n/;i++)
{
Qu now = Q.top();Q.pop();
int ml = now.dex;
int mr = st_cal(ml+,now.r,);
ans[pp++]=dat[ml];
ans[pp++]=dat[mr];
if (ml>now.l)
Q.push( (Qu){now.l,ml-,st_cal(now.l,ml-,)} );
if (mr->ml)
Q.push( (Qu){ml+,mr-,st_cal(ml+,mr-,)} );
if (mr<now.r)
Q.push( (Qu){mr+,now.r,st_cal(mr+,now.r,)} );
}
for (int i=;i<pp-;i++)
printf("%d ",ans[i]);
printf("%d\n",ans[pp-]);
return ;
}
手机扫一扫
移动阅读更方便
你可能感兴趣的文章