目录
import pandas as pd
import numpy as np
s = pd.Series()
s
Series([], dtype: float64)
data1 = [1, 2, 3]
data2 = np.array(data1, dtype=float)
s1 = pd.Series(data1)
s2 = pd.Series(data2)
print(s1)
print(s2)
0 1
1 2
2 3
dtype: int64
0 1.0
1 2.0
2 3.0
dtype: float64
s3 = pd.Series(data1, dtype=float)
s3
0 1.0
1 2.0
2 3.0
dtype: float64
我们可以看到,如果我们不指定dtype, 那么其会自行推断
data = np.array(['a', 'b', 'c', 'd'])
s = pd.Series(data, index=np.arange(100, 104))
s
100 a
101 b
102 c
103 d
dtype: object
data = {'a':0, "b":1, 'c':2}
s = pd.Series(data)
s
a 0
b 1
c 2
dtype: int64
s.index
Index(['a', 'b', 'c'], dtype='object')
s = pd.Series(data, index=['b', 'c', 'd', 'a'])
s
b 1.0
c 2.0
d NaN
a 0.0
dtype: float64
s = pd.Series(5, index=np.arange(5, 9))
s
5 5
6 5
7 5
8 5
dtype: int64
s = pd.Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e'])
s
a 1
b 2
c 3
d 4
e 5
dtype: int64
s[0], s[1], s[2]
(1, 2, 3)
s[:2], s[2:]
(a 1
b 2
dtype: int64, c 3
d 4
e 5
dtype: int64)
s[-3:]
c 3
d 4
e 5
dtype: int64
s['a'], s['b'], s['c']
(1, 2, 3)
s[['a', 'b', 'e']]
a 1
b 2
e 5
dtype: int64
pandas.DataFrame(data, index, columns, dtype, copy)
df = pd.DataFrame()
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
data = [1, 2, 3, 4, 5]
df = pd.DataFrame(data)
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
0
0
1
1
2
2
3
3
4
4
5
data = [['Alex', 10], ['Bob', 12], ['Clarke', 13]]
df = pd.DataFrame(data, columns=['Name', 'Age'])
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
Name
Age
0
Alex
10
1
Bob
12
2
Clarke
13
data = {'Name':['Alex', 'Bob', 'Clarke'], 'Age':[10., 12., 13.]}
df = pd.DataFrame(data)
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
Name
Age
0
Alex
10.0
1
Bob
12.0
2
Clarke
13.0
data = {'Name':['Alex', 'Bob', 'Clarke'], 'Age':[10., 12., 'NaN']} #长度需要匹配
df = pd.DataFrame(data, index=['rank1', 'rank2', 'rank3'])
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
Name
Age
rank1
Alex
10
rank2
Bob
12
rank3
Clarke
NaN
data = [{'a': 1, 'b': 2},{'a': 5, 'b': 10, 'c': 20}] #长度无需匹配
df = pd.DataFrame(data)
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
a
b
c
0
1
2
NaN
1
5
10
20.0
df1 = pd.DataFrame(data, index=['first', 'second'], columns=['a', 'b'])
df2 = pd.DataFrame(data, index=['first', 'second'], columns=['a', 'b1'])
print(df1)
print(df2)
a b
first 1 2
second 5 10
a b1
first 1 NaN
second 5 NaN
data = {
'one': pd.Series([1, 2, 3], index=['a', 'b', 'c']),
'two': pd.Series([1, 2, 3, 4.], index=['a', 'b', 'c', 'd'])
}
df = pd.DataFrame(data)
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
a
1.0
1.0
b
2.0
2.0
c
3.0
3.0
d
NaN
4.0
df['one']
a 1.0
b 2.0
c 3.0
d NaN
Name: one, dtype: float64
df['three'] = pd.Series([10, 20, 30])
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
three
a
1.0
1.0
NaN
b
2.0
2.0
NaN
c
3.0
3.0
NaN
d
NaN
4.0
NaN
df['three'] = pd.Series([10, 20, 30], index=['a', 'b', 'c'])
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
three
a
1.0
1.0
10.0
b
2.0
2.0
20.0
c
3.0
3.0
30.0
d
NaN
4.0
NaN
df['four'] = df['one'] + df['two']
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
three
four
a
1.0
1.0
10.0
2.0
b
2.0
2.0
20.0
4.0
c
3.0
3.0
30.0
6.0
d
NaN
4.0
NaN
NaN
del df['one']
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
two
three
four
a
1.0
10.0
2.0
b
2.0
20.0
4.0
c
3.0
30.0
6.0
d
4.0
NaN
NaN
df.pop('three')
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
two
four
a
1.0
2.0
b
2.0
4.0
c
3.0
6.0
d
4.0
NaN
data = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}
df = pd.DataFrame(data)
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
a
1.0
1
b
2.0
2
c
3.0
3
d
NaN
4
df.loc['b'] # row b
one 2.0
two 2.0
Name: b, dtype: float64
df.iloc[1] # 按照0, 1, 2...的顺序选择
one 2.0
two 2.0
Name: b, dtype: float64
df[2:4] #df[0]是错的
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
c
3.0
3
d
NaN
4
df = pd.DataFrame([[1, 2], [3, 4]], columns = ['a','b'])
df2 = pd.DataFrame([[5, 6], [7, 8]], columns = ['a','b'])
df = df.append(df2) #通过append可以在数据框后面添加数据,但是需要注意的这个操作并不会改变数据本身而是返回一个副本
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
a
b
0
1
2
1
3
4
0
5
6
1
7
8
df.drop(1) #利用drop可以依照index来删除某些行,比如1,即把index=1的行均移除, 同样也是返回一个副本
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
a
b
0
1
2
0
5
6
pandas.Panel(data, items, major_axis, minor_axis, dtype, copy)
items: axis=0
major_axis: axis=1
minor_axis: axis=2
data = np.random.rand(2, 4, 5)
data
array([[[0.13766405, 0.31453832, 0.51876265, 0.97380794, 0.28314695],
[0.02942928, 0.28957222, 0.38716041, 0.67941481, 0.54108452],
[0.84420857, 0.60339649, 0.49242029, 0.34838561, 0.91342058],
[0.1127622 , 0.28420695, 0.22687715, 0.06842055, 0.87414373]],
[[0.07591772, 0.86028356, 0.30468089, 0.15491769, 0.04969857],
[0.31649918, 0.85154403, 0.73062637, 0.99916418, 0.3809675 ],
[0.63817574, 0.81089715, 0.41390597, 0.6660661 , 0.91651907],
[0.24497635, 0.43923643, 0.01833888, 0.98348271, 0.89717517]]])
p = pd.Panel(data)
p
C:\Ana\lib\site-packages\IPython\core\interactiveshell.py:3267: FutureWarning:
Panel is deprecated and will be removed in a future version.
The recommended way to represent these types of 3-dimensional data are with a MultiIndex on a DataFrame, via the Panel.to_frame() method
Alternatively, you can use the xarray package http://xarray.pydata.org/en/stable/.
Pandas provides a `.to_xarray()` method to help automate this conversion.
exec(code_obj, self.user_global_ns, self.user_ns)
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 5 (minor_axis)
Items axis: 0 to 1
Major_axis axis: 0 to 3
Minor_axis axis: 0 to 4
data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)),
'Item2' : pd.DataFrame(np.random.randn(4, 2))}
p = pd.Panel(data)
p
C:\Ana\lib\site-packages\IPython\core\interactiveshell.py:3267: FutureWarning:
Panel is deprecated and will be removed in a future version.
The recommended way to represent these types of 3-dimensional data are with a MultiIndex on a DataFrame, via the Panel.to_frame() method
Alternatively, you can use the xarray package http://xarray.pydata.org/en/stable/.
Pandas provides a `.to_xarray()` method to help automate this conversion.
exec(code_obj, self.user_global_ns, self.user_ns)
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 0 to 3
Minor_axis axis: 0 to 2
p['Item1']
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
0
1
2
0
1.796552
1.614647
-2.199413
1
-1.213886
-1.438678
-1.045931
2
-2.178608
1.212732
0.526674
3
-0.360727
-0.135351
0.678293
p.major_xs(0)
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
Item1
Item2
0
1.796552
0.845528
1
1.614647
-0.708260
2
-2.199413
NaN
p.minor_xs(0)
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
Item1
Item2
0
1.796552
0.845528
1
-1.213886
0.555775
2
-2.178608
0.925129
3
-0.360727
-0.380906
p.major_axis, p.minor_axis
(RangeIndex(start=0, stop=4, step=1), RangeIndex(start=0, stop=3, step=1))
s = pd.Series(np.random.rand(5), index=['a', 'b', 'c', 'd', 'e'])
s
a 0.795298
b 0.141144
c 0.125098
d 0.965541
e 0.957783
dtype: float64
s.axes #返回index
[Index(['a', 'b', 'c', 'd', 'e'], dtype='object')]
s.dtype
dtype('float64')
s.empty #是否为空
False
s.ndim
1
s.size
5
s.values #以ndarray的形式返回数值
array([0.79529816, 0.14114367, 0.12509848, 0.96554135, 0.95778323])
s.head(3) #返回前n个
a 0.795298
b 0.141144
c 0.125098
dtype: float64
s.tail(3) #返回后n个
c 0.125098
d 0.965541
e 0.957783
dtype: float64
data = {"a":[1, 2, 3], 'b':['r', 'g', 'b']}
df = pd.DataFrame(data, index=['first', 'second', "third"])
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
a
b
first
1
r
second
2
g
third
3
b
df.T #转置
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
first
second
third
a
1
2
3
b
r
g
b
df.axes #有俩个Index
[Index(['first', 'second', 'third'], dtype='object'),
Index(['a', 'b'], dtype='object')]
df.dtypes
a int64
b object
dtype: object
df.empty
False
df.ndim
2
df.shape
(3, 2)
df.size #3 x 2
6
df.values #以ndarray 的形式返回
array([[1, 'r'],
[2, 'g'],
[3, 'b']], dtype=object)
df.head(2)
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
a
b
first
1
r
second
2
g
df.tail(2)
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
a
b
second
2
g
third
3
b
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])
}
#Create a DataFrame
df = pd.DataFrame(d)
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
Name
Age
Rating
0
Tom
25
4.23
1
James
26
3.24
2
Ricky
25
3.98
3
Vin
23
2.56
4
Steve
30
3.20
5
Smith
29
4.60
6
Jack
23
3.80
7
Lee
34
3.78
8
David
40
2.98
9
Gasper
30
4.80
10
Betina
51
4.10
11
Andres
46
3.65
df.sum() #默认是按行相加
Name TomJamesRickyVinSteveSmithJackLeeDavidGasperBe...
Age 382
Rating 44.92
dtype: object
df.sum()[1]
382
df.sum(1) #按列相加 居然自动避开了字符串...
0 29.23
1 29.24
2 28.98
3 25.56
4 33.20
5 33.60
6 26.80
7 37.78
8 42.98
9 34.80
10 55.10
11 49.65
dtype: float64
df.mean()
Age 31.833333
Rating 3.743333
dtype: float64
df.mean()['Age']
31.833333333333332
df.std()
Age 9.232682
Rating 0.661628
dtype: float64
1 count() Number of non-null observations
2 sum() Sum of values
3 mean() Mean of Values
4 median() Median of Values
5 mode() Mode of values
6 std() Standard Deviation of the Values
7 min() Minimum Value
8 max() Maximum Value
9 abs() Absolute Value
10 prod() Product of Values
11 cumsum() Cumulative Sum
12 cumprod() Cumulative Product
df.describe()
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
Age
Rating
count
12.000000
12.000000
mean
31.833333
3.743333
std
9.232682
0.661628
min
23.000000
2.560000
25%
25.000000
3.230000
50%
29.500000
3.790000
75%
35.500000
4.132500
max
51.000000
4.800000
df.describe(include=['object'])
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
Name
count
12
unique
12
top
Gasper
freq
1
object: 针对字符列
number: 针对数字列
all: 针对全部
df.describe(include='all') #注意'all'不要以列表的形式传入, 否则会报错
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
Name
Age
Rating
count
12
12.000000
12.000000
unique
12
NaN
NaN
top
Gasper
NaN
NaN
freq
1
NaN
NaN
mean
NaN
31.833333
3.743333
std
NaN
9.232682
0.661628
min
NaN
23.000000
2.560000
25%
NaN
25.000000
3.230000
50%
NaN
29.500000
3.790000
75%
NaN
35.500000
4.132500
max
NaN
51.000000
4.800000
df.describe(include='object')
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
Name
count
12
unique
12
top
Gasper
freq
1
pipe(func, …) -- 作用于整个表格
apply(func, 0) -- 作用于列或者行
applymap(func) -- 作用于每个元素
df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
col1
col2
col3
0
1.363701
0.533478
1.850151
1
0.541553
-1.190178
1.204944
2
0.181793
-0.199892
-0.602374
3
-0.411247
1.978019
1.183671
4
-0.045223
1.444328
-0.121690
def adder(ele1,ele2):
print("****")
print(ele1)
print("****")
print(ele2)
return ele1+ele2
df.pipe(adder, 2) #可以看出,ele1 == df, ele2 == 2
****
col1 col2 col3
0 1.363701 0.533478 1.850151
1 0.541553 -1.190178 1.204944
2 0.181793 -0.199892 -0.602374
3 -0.411247 1.978019 1.183671
4 -0.045223 1.444328 -0.121690
****
2
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
col1
col2
col3
0
3.363701
2.533478
3.850151
1
2.541553
0.809822
3.204944
2
2.181793
1.800108
1.397626
3
1.588753
3.978019
3.183671
4
1.954777
3.444328
1.878310
df2 = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
df2
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
col1
col2
col3
0
0.386211
1.297222
-0.413626
1
-1.873829
-0.007802
-0.857307
2
-0.881874
-2.026235
0.540769
3
0.458257
-0.590630
0.685780
4
0.177258
-1.843835
0.131939
def inf_print(x):
print(type(x))
print("*******")
print(x)
df2.apply(inf_print, 0)
<class 'pandas.core.series.Series'>
*******
0 0.386211
1 -1.873829
2 -0.881874
3 0.458257
4 0.177258
Name: col1, dtype: float64
<class 'pandas.core.series.Series'>
*******
0 1.297222
1 -0.007802
2 -2.026235
3 -0.590630
4 -1.843835
Name: col2, dtype: float64
<class 'pandas.core.series.Series'>
*******
0 -0.413626
1 -0.857307
2 0.540769
3 0.685780
4 0.131939
Name: col3, dtype: float64
col1 None
col2 None
col3 None
dtype: object
df2.apply(inf_print, 1)
<class 'pandas.core.series.Series'>
*******
col1 0.386211
col2 1.297222
col3 -0.413626
Name: 0, dtype: float64
<class 'pandas.core.series.Series'>
*******
col1 -1.873829
col2 -0.007802
col3 -0.857307
Name: 1, dtype: float64
<class 'pandas.core.series.Series'>
*******
col1 -0.881874
col2 -2.026235
col3 0.540769
Name: 2, dtype: float64
<class 'pandas.core.series.Series'>
*******
col1 0.458257
col2 -0.590630
col3 0.685780
Name: 3, dtype: float64
<class 'pandas.core.series.Series'>
*******
col1 0.177258
col2 -1.843835
col3 0.131939
Name: 4, dtype: float64
0 None
1 None
2 None
3 None
4 None
dtype: object
df2.apply(np.mean) #可以知道, apply会将列(默认,如果第二个参数为1则为行)一次次传入
col1 -0.346795
col2 -0.634256
col3 0.017511
dtype: float64
df2.applymap(lambda x: x*100)
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
col1
col2
col3
0
38.621115
129.722168
-41.362553
1
-187.382897
-0.780203
-85.730689
2
-88.187450
-202.623474
54.076880
3
45.825709
-59.062993
68.578010
4
17.725785
-184.383525
13.193880
N=20
df = pd.DataFrame({
'A': pd.date_range(start='2016-01-01',periods=N,freq='D'),
'x': np.linspace(0,stop=N-1,num=N),
'y': np.random.rand(N),
'C': np.random.choice(['Low','Medium','High'],N).tolist(),
'D': np.random.normal(100, 10, size=(N)).tolist()
})
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
x
y
C
D
0
2016-01-01
0.0
0.173488
High
117.632385
1
2016-01-02
1.0
0.493186
Low
114.066702
2
2016-01-03
2.0
0.982273
High
102.389228
3
2016-01-04
3.0
0.329518
Low
104.405035
4
2016-01-05
4.0
0.392182
Medium
85.867100
5
2016-01-06
5.0
0.905708
High
103.248690
6
2016-01-07
6.0
0.731801
Low
100.177698
7
2016-01-08
7.0
0.772975
High
97.365013
8
2016-01-09
8.0
0.953258
Low
90.228303
9
2016-01-10
9.0
0.503579
High
99.946431
10
2016-01-11
10.0
0.580698
Low
88.411279
11
2016-01-12
11.0
0.268562
High
91.238630
12
2016-01-13
12.0
0.462713
High
86.720994
13
2016-01-14
13.0
0.482387
High
104.549789
14
2016-01-15
14.0
0.963168
Medium
108.565120
15
2016-01-16
15.0
0.692654
High
112.370992
16
2016-01-17
16.0
0.716956
High
112.949463
17
2016-01-18
17.0
0.897878
Low
107.860172
18
2016-01-19
18.0
0.289202
Medium
90.430672
19
2016-01-20
19.0
0.957986
High
115.225753
df.reindex(index=(0, 2, 5), columns=['A', 'C', 'B']) #没有B所以会补
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
C
B
0
2016-01-01
High
NaN
2
2016-01-03
High
NaN
5
2016-01-06
High
NaN
df1 = pd.DataFrame(np.random.randn(4, 4))
df2 = pd.DataFrame(np.random.randn(3, 3))
df1
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
0
1
2
3
0
-2.515820
-0.027034
-0.695420
0.368491
1
-1.055241
0.778208
-1.062983
-1.715173
2
0.178253
-0.186661
0.615827
1.379872
3
-1.316952
-0.209785
-0.953194
-0.138620
df2
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
0
1
2
0
-0.913434
1.641339
-2.418425
1
0.113041
0.721168
0.446690
2
2.606504
-0.972984
-2.588228
df1.reindex_like(df2)
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
0
1
2
0
-2.515820
-0.027034
-0.695420
1
-1.055241
0.778208
-1.062983
2
0.178253
-0.186661
0.615827
pad/ffill - 用前面的值填充
bfill/backfill - 用后面的值填充
nearest - 用最近的值填充
df2.reindex_like(df1, method="ffill")
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
0
1
2
3
0
-0.913434
1.641339
-2.418425
-2.418425
1
0.113041
0.721168
0.446690
0.446690
2
2.606504
-0.972984
-2.588228
-2.588228
3
2.606504
-0.972984
-2.588228
-2.588228
df2.reindex_like(df1, method="bfill")
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
0
1
2
3
0
-0.913434
1.641339
-2.418425
NaN
1
0.113041
0.721168
0.446690
NaN
2
2.606504
-0.972984
-2.588228
NaN
3
NaN
NaN
NaN
NaN
df2.reindex_like(df1, method="nearest")
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
0
1
2
3
0
-0.913434
1.641339
-2.418425
-2.418425
1
0.113041
0.721168
0.446690
0.446690
2
2.606504
-0.972984
-2.588228
-2.588228
3
2.606504
-0.972984
-2.588228
-2.588228
df1 = pd.DataFrame(np.random.randn(7, 7))
df2 = pd.DataFrame(np.random.randn(3, 3))
df1, df2
( 0 1 2 3 4 5 6
0 0.592257 0.913287 1.276314 0.064212 1.338661 -0.110666 -0.459020
1 -0.104347 0.388397 -1.822243 1.927027 0.890738 0.577283 -0.302798
2 -0.016216 -1.101383 0.128118 -0.138639 1.642480 -1.382323 -0.835393
3 1.411169 -0.395379 -0.412377 0.661016 -0.602245 0.558017 0.588833
4 0.609378 0.338787 -0.858829 0.006657 1.509428 -0.283262 -0.563293
5 -1.316789 0.152338 -1.027535 0.026238 -0.052540 1.233837 -1.028193
6 0.992425 1.364755 -1.384109 -1.888707 -0.259932 -0.207928 0.135734,
0 1 2
0 -0.297591 1.019611 0.892070
1 0.881763 -0.498356 1.708343
2 0.123616 0.875709 0.387768)
df2.reindex_like(df1, method="ffill", limit=1)
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
0
1
2
3
4
5
6
0
-0.297591
1.019611
0.892070
0.892070
NaN
NaN
NaN
1
0.881763
-0.498356
1.708343
1.708343
NaN
NaN
NaN
2
0.123616
0.875709
0.387768
0.387768
NaN
NaN
NaN
3
0.123616
0.875709
0.387768
0.387768
NaN
NaN
NaN
4
NaN
NaN
NaN
NaN
NaN
NaN
NaN
5
NaN
NaN
NaN
NaN
NaN
NaN
NaN
6
NaN
NaN
NaN
NaN
NaN
NaN
NaN
df2.reindex_like(df1, method="ffill", limit=2) #可以发现,limit限制了填补的最大数量
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
0
1
2
3
4
5
6
0
-0.297591
1.019611
0.892070
0.892070
0.892070
NaN
NaN
1
0.881763
-0.498356
1.708343
1.708343
1.708343
NaN
NaN
2
0.123616
0.875709
0.387768
0.387768
0.387768
NaN
NaN
3
0.123616
0.875709
0.387768
0.387768
0.387768
NaN
NaN
4
0.123616
0.875709
0.387768
0.387768
0.387768
NaN
NaN
5
NaN
NaN
NaN
NaN
NaN
NaN
NaN
6
NaN
NaN
NaN
NaN
NaN
NaN
NaN
df2
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
0
1
2
0
-0.297591
1.019611
0.892070
1
0.881763
-0.498356
1.708343
2
0.123616
0.875709
0.387768
df2.rename(columns={0:'A', 1:'B', 2:'C', 3:'D'},
index={0:'a', 1:'b', 2:'c', 3:'d'})
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
B
C
a
-0.297591
1.019611
0.892070
b
0.881763
-0.498356
1.708343
c
0.123616
0.875709
0.387768
df2 #注意返回的是一个副本
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
0
1
2
0
-0.297591
1.019611
0.892070
1
0.881763
-0.498356
1.708343
2
0.123616
0.875709
0.387768
N=20
df = pd.DataFrame({
'A': pd.date_range(start='2016-01-01',periods=N,freq='D'),
'x': np.linspace(0,stop=N-1,num=N),
'y': np.random.rand(N),
'C': np.random.choice(['Low','Medium','High'],N).tolist(),
'D': np.random.normal(100, 10, size=(N)).tolist()
})
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
x
y
C
D
0
2016-01-01
0.0
0.529153
Low
110.430517
1
2016-01-02
1.0
0.713513
Low
125.401221
2
2016-01-03
2.0
0.751809
Medium
112.446846
3
2016-01-04
3.0
0.124047
High
108.633343
4
2016-01-05
4.0
0.472205
Medium
102.750572
5
2016-01-06
5.0
0.221076
High
108.208930
6
2016-01-07
6.0
0.231904
High
104.982321
7
2016-01-08
7.0
0.567697
Medium
117.178737
8
2016-01-09
8.0
0.384391
Medium
94.160408
9
2016-01-10
9.0
0.109675
Medium
108.560830
10
2016-01-11
10.0
0.681480
High
101.400936
11
2016-01-12
11.0
0.918687
Medium
102.421124
12
2016-01-13
12.0
0.332227
High
99.464727
13
2016-01-14
13.0
0.373779
High
107.219963
14
2016-01-15
14.0
0.412173
Low
97.184597
15
2016-01-16
15.0
0.194842
Medium
96.671218
16
2016-01-17
16.0
0.372288
Low
105.270272
17
2016-01-18
17.0
0.068876
Low
101.112631
18
2016-01-19
18.0
0.391142
High
102.240937
19
2016-01-20
19.0
0.942600
Low
92.492350
for col in df:
print(col)
A
x
y
C
D
for key, value in df.iteritems():
print(key)
print("*******")
print(value)
print("#######")
A
*******
0 2016-01-01
1 2016-01-02
2 2016-01-03
3 2016-01-04
4 2016-01-05
5 2016-01-06
6 2016-01-07
7 2016-01-08
8 2016-01-09
9 2016-01-10
10 2016-01-11
11 2016-01-12
12 2016-01-13
13 2016-01-14
14 2016-01-15
15 2016-01-16
16 2016-01-17
17 2016-01-18
18 2016-01-19
19 2016-01-20
Name: A, dtype: datetime64[ns]
#######
x
*******
0 0.0
1 1.0
2 2.0
3 3.0
4 4.0
5 5.0
6 6.0
7 7.0
8 8.0
9 9.0
10 10.0
11 11.0
12 12.0
13 13.0
14 14.0
15 15.0
16 16.0
17 17.0
18 18.0
19 19.0
Name: x, dtype: float64
#######
y
*******
0 0.529153
1 0.713513
2 0.751809
3 0.124047
4 0.472205
5 0.221076
6 0.231904
7 0.567697
8 0.384391
9 0.109675
10 0.681480
11 0.918687
12 0.332227
13 0.373779
14 0.412173
15 0.194842
16 0.372288
17 0.068876
18 0.391142
19 0.942600
Name: y, dtype: float64
#######
C
*******
0 Low
1 Low
2 Medium
3 High
4 Medium
5 High
6 High
7 Medium
8 Medium
9 Medium
10 High
11 Medium
12 High
13 High
14 Low
15 Medium
16 Low
17 Low
18 High
19 Low
Name: C, dtype: object
#######
D
*******
0 110.430517
1 125.401221
2 112.446846
3 108.633343
4 102.750572
5 108.208930
6 104.982321
7 117.178737
8 94.160408
9 108.560830
10 101.400936
11 102.421124
12 99.464727
13 107.219963
14 97.184597
15 96.671218
16 105.270272
17 101.112631
18 102.240937
19 92.492350
Name: D, dtype: float64
#######
for index, row in df.iterrows():
print(index)
print("********")
print(row)
print("########")
0
********
A 2016-01-01 00:00:00
x 0
y 0.529153
C Low
D 110.431
Name: 0, dtype: object
########
1
********
A 2016-01-02 00:00:00
x 1
y 0.713513
C Low
D 125.401
Name: 1, dtype: object
########
2
********
A 2016-01-03 00:00:00
x 2
y 0.751809
C Medium
D 112.447
Name: 2, dtype: object
########
3
********
A 2016-01-04 00:00:00
x 3
y 0.124047
C High
D 108.633
Name: 3, dtype: object
########
4
********
A 2016-01-05 00:00:00
x 4
y 0.472205
C Medium
D 102.751
Name: 4, dtype: object
########
5
********
A 2016-01-06 00:00:00
x 5
y 0.221076
C High
D 108.209
Name: 5, dtype: object
########
6
********
A 2016-01-07 00:00:00
x 6
y 0.231904
C High
D 104.982
Name: 6, dtype: object
########
7
********
A 2016-01-08 00:00:00
x 7
y 0.567697
C Medium
D 117.179
Name: 7, dtype: object
########
8
********
A 2016-01-09 00:00:00
x 8
y 0.384391
C Medium
D 94.1604
Name: 8, dtype: object
########
9
********
A 2016-01-10 00:00:00
x 9
y 0.109675
C Medium
D 108.561
Name: 9, dtype: object
########
10
********
A 2016-01-11 00:00:00
x 10
y 0.68148
C High
D 101.401
Name: 10, dtype: object
########
11
********
A 2016-01-12 00:00:00
x 11
y 0.918687
C Medium
D 102.421
Name: 11, dtype: object
########
12
********
A 2016-01-13 00:00:00
x 12
y 0.332227
C High
D 99.4647
Name: 12, dtype: object
########
13
********
A 2016-01-14 00:00:00
x 13
y 0.373779
C High
D 107.22
Name: 13, dtype: object
########
14
********
A 2016-01-15 00:00:00
x 14
y 0.412173
C Low
D 97.1846
Name: 14, dtype: object
########
15
********
A 2016-01-16 00:00:00
x 15
y 0.194842
C Medium
D 96.6712
Name: 15, dtype: object
########
16
********
A 2016-01-17 00:00:00
x 16
y 0.372288
C Low
D 105.27
Name: 16, dtype: object
########
17
********
A 2016-01-18 00:00:00
x 17
y 0.0688757
C Low
D 101.113
Name: 17, dtype: object
########
18
********
A 2016-01-19 00:00:00
x 18
y 0.391142
C High
D 102.241
Name: 18, dtype: object
########
19
********
A 2016-01-20 00:00:00
x 19
y 0.9426
C Low
D 92.4924
Name: 19, dtype: object
########
for row in df.itertuples():
print(row)
print("*********")
Pandas(Index=0, A=Timestamp('2016-01-01 00:00:00'), x=0.0, y=0.5291527485322772, C='Low', D=110.43051702923863)
*********
Pandas(Index=1, A=Timestamp('2016-01-02 00:00:00'), x=1.0, y=0.713512538332376, C='Low', D=125.40122093094763)
*********
Pandas(Index=2, A=Timestamp('2016-01-03 00:00:00'), x=2.0, y=0.7518093449140011, C='Medium', D=112.44684623090683)
*********
Pandas(Index=3, A=Timestamp('2016-01-04 00:00:00'), x=3.0, y=0.12404682661025335, C='High', D=108.63334270085768)
*********
Pandas(Index=4, A=Timestamp('2016-01-05 00:00:00'), x=4.0, y=0.47220500135853094, C='Medium', D=102.75057211144569)
*********
Pandas(Index=5, A=Timestamp('2016-01-06 00:00:00'), x=5.0, y=0.22107632396965704, C='High', D=108.20892974035311)
*********
Pandas(Index=6, A=Timestamp('2016-01-07 00:00:00'), x=6.0, y=0.23190410081052582, C='High', D=104.98232144314449)
*********
Pandas(Index=7, A=Timestamp('2016-01-08 00:00:00'), x=7.0, y=0.5676969704991909, C='Medium', D=117.17873695254926)
*********
Pandas(Index=8, A=Timestamp('2016-01-09 00:00:00'), x=8.0, y=0.38439055971010483, C='Medium', D=94.16040790153708)
*********
Pandas(Index=9, A=Timestamp('2016-01-10 00:00:00'), x=9.0, y=0.10967465769586215, C='Medium', D=108.56083032097501)
*********
Pandas(Index=10, A=Timestamp('2016-01-11 00:00:00'), x=10.0, y=0.6814801929159177, C='High', D=101.40093570017285)
*********
Pandas(Index=11, A=Timestamp('2016-01-12 00:00:00'), x=11.0, y=0.9186874162117078, C='Medium', D=102.42112353899493)
*********
Pandas(Index=12, A=Timestamp('2016-01-13 00:00:00'), x=12.0, y=0.33222699128916544, C='High', D=99.46472715055548)
*********
Pandas(Index=13, A=Timestamp('2016-01-14 00:00:00'), x=13.0, y=0.37377940932622644, C='High', D=107.21996306704972)
*********
Pandas(Index=14, A=Timestamp('2016-01-15 00:00:00'), x=14.0, y=0.41217288447139533, C='Low', D=97.1845970026168)
*********
Pandas(Index=15, A=Timestamp('2016-01-16 00:00:00'), x=15.0, y=0.19484179666549728, C='Medium', D=96.67121785562782)
*********
Pandas(Index=16, A=Timestamp('2016-01-17 00:00:00'), x=16.0, y=0.3722882537710307, C='Low', D=105.27027217632694)
*********
Pandas(Index=17, A=Timestamp('2016-01-18 00:00:00'), x=17.0, y=0.068875657049556, C='Low', D=101.11263086450178)
*********
Pandas(Index=18, A=Timestamp('2016-01-19 00:00:00'), x=18.0, y=0.3911420688006072, C='High', D=102.24093699498466)
*********
Pandas(Index=19, A=Timestamp('2016-01-20 00:00:00'), x=19.0, y=0.9425996619637542, C='Low', D=92.49235045195462)
*********
教程上说,迭代的东西是一个副本,所以对其中的元素进行更改是不会影响原数据的.
unsorted_df=pd.DataFrame(np.random.randn(10,2),index=[1,4,6,2,3,5,9,8,0,7],columns=['col2','col1'])
unsorted_df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
col2
col1
1
0.418578
-0.556598
4
0.513646
1.436592
6
0.830816
1.500456
2
-0.373790
-0.578432
3
0.961146
0.991754
5
0.826093
-0.345533
9
0.881435
0.934766
8
-1.388952
-1.276708
0
-0.685924
-0.210499
7
1.556807
-0.652186
unsorted_df.sort_index(ascending=False) #通过label排序
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
col2
col1
9
0.881435
0.934766
8
-1.388952
-1.276708
7
1.556807
-0.652186
6
0.830816
1.500456
5
0.826093
-0.345533
4
0.513646
1.436592
3
0.961146
0.991754
2
-0.373790
-0.578432
1
0.418578
-0.556598
0
-0.685924
-0.210499
help(unsorted_df.sort_index)
Help on method sort_index in module pandas.core.frame:
sort_index(axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, by=None) method of pandas.core.frame.DataFrame instance
Sort object by labels (along an axis)
Parameters
----------
axis : index, columns to direct sorting
level : int or level name or list of ints or list of level names
if not None, sort on values in specified index level(s)
ascending : boolean, default True
Sort ascending vs. descending
inplace : bool, default False
if True, perform operation in-place
kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'
Choice of sorting algorithm. See also ndarray.np.sort for more
information. `mergesort` is the only stable algorithm. For
DataFrames, this option is only applied when sorting on a single
column or label.
na_position : {'first', 'last'}, default 'last'
`first` puts NaNs at the beginning, `last` puts NaNs at the end.
Not implemented for MultiIndex.
sort_remaining : bool, default True
if true and sorting by level and index is multilevel, sort by other
levels too (in order) after sorting by specified level
Returns
-------
sorted_obj : DataFrame
unsorted_df.sort_index(axis=1)
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
col1
col2
1
-0.556598
0.418578
4
1.436592
0.513646
6
1.500456
0.830816
2
-0.578432
-0.373790
3
0.991754
0.961146
5
-0.345533
0.826093
9
0.934766
0.881435
8
-1.276708
-1.388952
0
-0.210499
-0.685924
7
-0.652186
1.556807
unsorted_df = pd.DataFrame({'col1':[2,1,1,1],'col2':[1,3,2,4]})
unsorted_df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
col1
col2
0
2
1
1
1
3
2
1
2
3
1
4
unsorted_df.sort_values(by="col1")
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
col1
col2
1
1
3
2
1
2
3
1
4
0
2
1
help(unsorted_df.sort_values)
Help on method sort_values in module pandas.core.frame:
sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last') method of pandas.core.frame.DataFrame instance
Sort by the values along either axis
Parameters
----------
by : str or list of str
Name or list of names to sort by.
- if `axis` is 0 or `'index'` then `by` may contain index
levels and/or column labels
- if `axis` is 1 or `'columns'` then `by` may contain column
levels and/or index labels
.. versionchanged:: 0.23.0
Allow specifying index or column level names.
axis : {0 or 'index', 1 or 'columns'}, default 0
Axis to be sorted
ascending : bool or list of bool, default True
Sort ascending vs. descending. Specify list for multiple sort
orders. If this is a list of bools, must match the length of
the by.
inplace : bool, default False
if True, perform operation in-place
kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'
Choice of sorting algorithm. See also ndarray.np.sort for more
information. `mergesort` is the only stable algorithm. For
DataFrames, this option is only applied when sorting on a single
column or label.
na_position : {'first', 'last'}, default 'last'
`first` puts NaNs at the beginning, `last` puts NaNs at the end
Returns
-------
sorted_obj : DataFrame
Examples
--------
>>> df = pd.DataFrame({
... 'col1' : ['A', 'A', 'B', np.nan, 'D', 'C'],
... 'col2' : [2, 1, 9, 8, 7, 4],
... 'col3': [0, 1, 9, 4, 2, 3],
... })
>>> df
col1 col2 col3
0 A 2 0
1 A 1 1
2 B 9 9
3 NaN 8 4
4 D 7 2
5 C 4 3
Sort by col1
>>> df.sort_values(by=['col1'])
col1 col2 col3
0 A 2 0
1 A 1 1
2 B 9 9
5 C 4 3
4 D 7 2
3 NaN 8 4
Sort by multiple columns
>>> df.sort_values(by=['col1', 'col2'])
col1 col2 col3
1 A 1 1
0 A 2 0
2 B 9 9
5 C 4 3
4 D 7 2
3 NaN 8 4
Sort Descending
>>> df.sort_values(by='col1', ascending=False)
col1 col2 col3
4 D 7 2
5 C 4 3
2 B 9 9
0 A 2 0
1 A 1 1
3 NaN 8 4
Putting NAs first
>>> df.sort_values(by='col1', ascending=False, na_position='first')
col1 col2 col3
3 NaN 8 4
4 D 7 2
5 C 4 3
2 B 9 9
0 A 2 0
1 A 1 1
df = pd.DataFrame(np.random.randn(8, 4),
index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D'])
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
B
C
D
a
-0.235229
0.214813
0.838116
1.081632
b
0.530365
0.600021
0.753903
-1.958886
c
1.760542
-1.027882
-0.053263
0.299710
d
-0.241942
0.455707
-0.684968
-0.513217
e
0.866758
1.035051
-0.451651
-0.987964
f
1.620520
0.236408
0.478373
-1.012238
g
-0.236978
0.352751
-0.514737
-0.195936
h
-0.046064
0.129530
-0.874676
1.740141
df.loc[:, 'A']
a 2.539530
b -0.278140
c 1.291831
d -0.231592
e -2.047005
f -0.720743
g -0.995131
h 0.190029
Name: A, dtype: float64
df.loc[:, ['A', 'C']]
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
C
a
2.539530
-0.290170
b
-0.278140
1.575699
c
1.291831
0.038547
d
-0.231592
0.117562
e
-2.047005
-0.569768
f
-0.720743
0.321223
g
-0.995131
1.530757
h
0.190029
-0.068202
df.loc['a':'h']
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
B
C
D
a
2.539530
0.046380
-0.290170
-1.540302
b
-0.278140
1.420046
1.575699
0.533353
c
1.291831
2.595299
0.038547
-0.488134
d
-0.231592
-0.162497
0.117562
1.452291
e
-2.047005
-0.046110
-0.569768
1.328672
f
-0.720743
0.339251
0.321223
-0.310041
g
-0.995131
0.831769
1.530757
0.975214
h
0.190029
1.056606
-0.068202
-1.127776
df.loc[df.loc[:, 'A'] > 0, 'A']
b 0.530365
c 1.760542
e 0.866758
f 1.620520
Name: A, dtype: float64
df.iloc[:4]
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
B
C
D
a
2.539530
0.046380
-0.290170
-1.540302
b
-0.278140
1.420046
1.575699
0.533353
c
1.291831
2.595299
0.038547
-0.488134
d
-0.231592
-0.162497
0.117562
1.452291
df.iloc[1:5, 2:4]
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
C
D
b
1.575699
0.533353
c
0.038547
-0.488134
d
0.117562
1.452291
e
-0.569768
1.328672
import collections
p = collections.defaultdict(int)
p['A'] += 1
p['B'] += 1
p
defaultdict(int, {'A': 1, 'B': 1})
df = pd.DataFrame({'thing':['A', 'A', 'B', 'A', 'B', 'A', 'C', 'C', 'C']})
for row in df.loc[df.loc[:, 'thing']== 'D'].iterrows():
print(1)
x = set([1, 2, 3, 1])
x
{1, 2, 3}
df2 = df.copy()
df2
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
D
a
-0.235229
1.081632
b
0.530365
-1.958886
c
1.760542
0.299710
d
-0.241942
-0.513217
e
0.866758
-0.987964
f
1.620520
-1.012238
g
-0.236978
-0.195936
h
-0.046064
1.740141
df2.loc['a'][0] = 3
df3 = df['A']
df3
a -0.235229
b 0.530365
c 1.760542
d -0.241942
e 0.866758
f 1.620520
g -0.236978
h -0.046064
Name: A, dtype: float64
df3['a'] = 3
df3
a 3.000000
b 0.530365
c 1.760542
d -0.241942
e 0.866758
f 1.620520
g -0.236978
h -0.046064
Name: A, dtype: float64
df3 = df.iloc[:4]
df3
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
D
a
3.000000
1.081632
b
0.530365
-1.958886
c
1.760542
0.299710
d
-0.241942
-0.513217
df3.pop('A')
a 0.000000
b 0.530365
c 1.760542
d -0.241942
Name: A, dtype: float64
d = {1:1, 2:2}
u = {3:3}
d.update(u)
d
{1: 1, 2: 2, 3: 3}
s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t', np.nan, '1234','SteveSmith'])
s
0 Tom
1 William Rick
2 John
3 Alber@t
4 NaN
5 1234
6 SteveSmith
dtype: object
list(s.str)
[0 T
1 W
2 J
3 A
4 NaN
5 1
6 S
dtype: object, 0 o
1 i
2 o
3 l
4 NaN
5 2
6 t
dtype: object, 0 m
1 l
2 h
3 b
4 NaN
5 3
6 e
dtype: object, 0 NaN
1 l
2 n
3 e
4 NaN
5 4
6 v
dtype: object, 0 NaN
1 i
2 NaN
3 r
4 NaN
5 NaN
6 e
dtype: object, 0 NaN
1 a
2 NaN
3 @
4 NaN
5 NaN
6 S
dtype: object, 0 NaN
1 m
2 NaN
3 t
4 NaN
5 NaN
6 m
dtype: object, 0 NaN
1
2 NaN
3 NaN
4 NaN
5 NaN
6 i
dtype: object, 0 NaN
1 R
2 NaN
3 NaN
4 NaN
5 NaN
6 t
dtype: object, 0 NaN
1 i
2 NaN
3 NaN
4 NaN
5 NaN
6 h
dtype: object, 0 NaN
1 c
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
dtype: object, 0 NaN
1 k
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
dtype: object]
s.str.lower() #所以这一步实际上就是把s.str的第一个部分全部改为小写?
0 tom
1 william rick
2 john
3 alber@t
4 NaN
5 1234
6 stevesmith
dtype: object
s.str.upper()
0 TOM
1 WILLIAM RICK
2 JOHN
3 ALBER@T
4 NaN
5 1234
6 STEVESMITH
dtype: object
s.str.len() #实际上就是把每一个元素的长度弄出来
0 3.0
1 12.0
2 4.0
3 7.0
4 NaN
5 4.0
6 10.0
dtype: float64
s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])
s
0 Tom
1 William Rick
2 John
3 Alber@t
dtype: object
s.str.strip()
0 Tom
1 William Rick
2 John
3 Alber@t
dtype: object
s.str.strip('k')
0 Tom
1 William Ric
2 John
3 Alber@t
dtype: object
s.str.split('o')
0 [T, m ]
1 [ William Rick]
2 [J, hn]
3 [Alber@t]
dtype: object
s.str.split()
0 [Tom]
1 [William, Rick]
2 [John]
3 [Alber@t]
dtype: object
s.str.split(' ')
0 [Tom, , , , , , , , , , , , ]
1 [, William, Rick]
2 [John]
3 [Alber@t]
dtype: object
s.str.cat()
'Tom William RickJohnAlber@t'
s.str.cat(sep='A')
'Tom A William RickAJohnAAlber@t'
s.str.cat(sep='_____')
'Tom _____ William Rick_____John_____Alber@t'
help(s.str.cat) #所以如果不是series之间相连接,需要通过关键词sep来传入分隔符
Help on method cat in module pandas.core.strings:
cat(others=None, sep=None, na_rep=None, join=None) method of pandas.core.strings.StringMethods instance
Concatenate strings in the Series/Index with given separator.
If `others` is specified, this function concatenates the Series/Index
and elements of `others` element-wise.
If `others` is not passed, then all values in the Series/Index are
concatenated into a single string with a given `sep`.
Parameters
----------
others : Series, Index, DataFrame, np.ndarrary or list-like
Series, Index, DataFrame, np.ndarray (one- or two-dimensional) and
other list-likes of strings must have the same length as the
calling Series/Index, with the exception of indexed objects (i.e.
Series/Index/DataFrame) if `join` is not None.
If others is a list-like that contains a combination of Series,
np.ndarray (1-dim) or list-like, then all elements will be unpacked
and must satisfy the above criteria individually.
If others is None, the method returns the concatenation of all
strings in the calling Series/Index.
sep : string or None, default None
If None, concatenates without any separator.
na_rep : string or None, default None
Representation that is inserted for all missing values:
- If `na_rep` is None, and `others` is None, missing values in the
Series/Index are omitted from the result.
- If `na_rep` is None, and `others` is not None, a row containing a
missing value in any of the columns (before concatenation) will
have a missing value in the result.
join : {'left', 'right', 'outer', 'inner'}, default None
Determines the join-style between the calling Series/Index and any
Series/Index/DataFrame in `others` (objects without an index need
to match the length of the calling Series/Index). If None,
alignment is disabled, but this option will be removed in a future
version of pandas and replaced with a default of `'left'`. To
disable alignment, use `.values` on any Series/Index/DataFrame in
`others`.
.. versionadded:: 0.23.0
Returns
-------
concat : str or Series/Index of objects
If `others` is None, `str` is returned, otherwise a `Series/Index`
(same type as caller) of objects is returned.
See Also
--------
split : Split each string in the Series/Index
Examples
--------
When not passing `others`, all values are concatenated into a single
string:
>>> s = pd.Series(['a', 'b', np.nan, 'd'])
>>> s.str.cat(sep=' ')
'a b d'
By default, NA values in the Series are ignored. Using `na_rep`, they
can be given a representation:
>>> s.str.cat(sep=' ', na_rep='?')
'a b ? d'
If `others` is specified, corresponding values are concatenated with
the separator. Result will be a Series of strings.
>>> s.str.cat(['A', 'B', 'C', 'D'], sep=',')
0 a,A
1 b,B
2 NaN
3 d,D
dtype: object
Missing values will remain missing in the result, but can again be
represented using `na_rep`
>>> s.str.cat(['A', 'B', 'C', 'D'], sep=',', na_rep='-')
0 a,A
1 b,B
2 -,C
3 d,D
dtype: object
If `sep` is not specified, the values are concatenated without
separation.
>>> s.str.cat(['A', 'B', 'C', 'D'], na_rep='-')
0 aA
1 bB
2 -C
3 dD
dtype: object
Series with different indexes can be aligned before concatenation. The
`join`-keyword works as in other methods.
>>> t = pd.Series(['d', 'a', 'e', 'c'], index=[3, 0, 4, 2])
>>> s.str.cat(t, join=None, na_rep='-')
0 ad
1 ba
2 -e
3 dc
dtype: object
>>>
>>> s.str.cat(t, join='left', na_rep='-')
0 aa
1 b-
2 -c
3 dd
dtype: object
>>>
>>> s.str.cat(t, join='outer', na_rep='-')
0 aa
1 b-
2 -c
3 dd
4 -e
dtype: object
>>>
>>> s.str.cat(t, join='inner', na_rep='-')
0 aa
2 -c
3 dd
dtype: object
>>>
>>> s.str.cat(t, join='right', na_rep='-')
3 dd
0 aa
4 -e
2 -c
dtype: object
For more examples, see :ref:`here <text.concatenate>`.
s.str.get_dummies()
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
William Rick
Alber@t
John
Tom
0
0
0
0
1
1
1
0
0
0
2
0
0
1
0
3
0
1
0
0
s = pd.Series(['Tom ', ' William Rick', 'Alber@t', 'John'])
s.str.get_dummies()
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
William Rick
Alber@t
John
Tom
0
0
0
0
1
1
1
0
0
0
2
0
1
0
0
3
0
0
1
0
所以是以DataFrame的形式来表示各个字符出现的顺序?
s.str.contains(' ')
0 True
1 True
2 False
3 False
dtype: bool
s.str.contains('o')
0 True
1 False
2 False
3 True
dtype: bool
s.str.replace('@', '$')
0 Tom
1 William Rick
2 Alber$t
3 John
dtype: object
s = pd.Series(['Tom ', ' William Rick', 'Alber@t', 'John', np.nan])
s.str.repeat(3)
0 Tom Tom Tom
1 William Rick William Rick William Rick
2 Alber@tAlber@tAlber@t
3 JohnJohnJohn
dtype: object
s.str.repeat([1, 2, 3, 4])
0 Tom
1 William Rick William Rick
2 Alber@tAlber@tAlber@t
3 JohnJohnJohnJohn
dtype: object
统计s2在每个元素中出现的次数(不一定要相等,被包含也是可以的)
s.str.count('m')
0 1
1 1
2 0
3 0
dtype: int64
s.str.startswith('To')
0 True
1 False
2 False
3 False
4 NaN
dtype: object
s.str.startswith('To', na=False)
0 True
1 False
2 False
3 False
4 False
dtype: bool
s.str.find('e') # -1表示不存在, 其它的数字表示其位置
0 -1.0
1 -1.0
2 3.0
3 -1.0
4 NaN
dtype: float64
s.str.findall('e') #?这样感觉还不如上面的好用啊
0 []
1 []
2 [e]
3 []
4 NaN
dtype: object
s.str.islower()
0 False
1 False
2 False
3 False
4 NaN
dtype: object
s.str.isupper()
0 False
1 False
2 False
3 False
4 NaN
dtype: object
s.str.isnumeric()
0 False
1 False
2 False
3 False
4 NaN
dtype: object
get_option()
set_option()
reset_option()
describe_option()
option_context()
display.max_rows
display.max_columns
display.expand_frame_repr
display.max_colwidth
display.precision #精确度
pd.get_option("display.max_rows") #能够显示的最大行数
60
pd.get_option("display.max_columns") #能够显示的最大列数
20
pd.set_option("display.max_rows", 10) #设置能够显示的最大行数为10
pd.get_option("display.max_rows")
10
s = pd.Series(np.arange(11))
s
0 0
1 1
2 2
3 3
4 4
..
6 6
7 7
8 8
9 9
10 10
Length: 11, dtype: int32
pd.set_option("display.max_columns", 2) #设置能够显示最大列数为2
pd.get_option("display.max_columns")
2
data = {1:np.arange(10), 2:np.arange(1, 11), 3:np.arange(2, 12)}
df = pd.DataFrame(data)
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
1
…
3
0
0
…
2
1
1
…
3
2
2
…
4
3
3
…
5
4
4
…
6
5
5
…
7
6
6
…
8
7
7
…
9
8
8
…
10
9
9
…
11
10 rows × 3 columns
reset_option 接受一个参数,设置其属性为默认的属性
pd.reset_option("display.max_rows")
pd.reset_option("display.max_columns")
s
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
dtype: int32
打印对参数的说明
pd.describe_option("display.max_rows")
display.max_rows : int
If max_rows is exceeded, switch to truncate view. Depending on
`large_repr`, objects are either centrally truncated or printed as
a summary view. 'None' value means unlimited.
In case python/IPython is running in a terminal and `large_repr`
equals 'truncate' this can be set to 0 and pandas will auto-detect
the height of the terminal and print a truncated object which fits
the screen height. The IPython notebook, IPython qtconsole, or
IDLE do not run in a terminal and hence it is not possible to do
correct auto-detection.
[default: 60] [currently: 60]
with pd.option_context("display.max_rows", 10):
print(pd.get_option("display.max_rows"))
print(pd.get_option("display.max_rows"))
10
60
所以其实这就是一个上下文,在上下文管理器中,参数会被暂时性地调整,离开控制之后,便会回到原先的状态
比较每一个元素与其之前的元素的变化率
s = pd.Series([1,2,3,4,5,4])
s.pct_change()
0 NaN
1 1.000000
2 0.500000
3 0.333333
4 0.250000
5 -0.200000
dtype: float64
df = pd.DataFrame(np.random.randn(5, 2))
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
0
1
0
0.855450
-0.673131
1
0.610321
0.389186
2
0.386450
-0.209481
3
-0.159426
1.941561
4
0.692407
0.332914
df.pct_change()
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
0
1
0
NaN
NaN
1
-0.286549
-1.578173
2
-0.366809
-1.538254
3
-1.412541
-10.268438
4
-5.343109
-0.828533
help(df.pct_change)
Help on method pct_change in module pandas.core.generic:
pct_change(periods=1, fill_method='pad', limit=None, freq=None, **kwargs) method of pandas.core.frame.DataFrame instance
Percentage change between the current and a prior element.
Computes the percentage change from the immediately previous row by
default. This is useful in comparing the percentage of change in a time
series of elements.
Parameters
----------
periods : int, default 1
Periods to shift for forming percent change.
fill_method : str, default 'pad'
How to handle NAs before computing percent changes.
limit : int, default None
The number of consecutive NAs to fill before stopping.
freq : DateOffset, timedelta, or offset alias string, optional
Increment to use from time series API (e.g. 'M' or BDay()).
**kwargs
Additional keyword arguments are passed into
`DataFrame.shift` or `Series.shift`.
Returns
-------
chg : Series or DataFrame
The same type as the calling object.
See Also
--------
Series.diff : Compute the difference of two elements in a Series.
DataFrame.diff : Compute the difference of two elements in a DataFrame.
Series.shift : Shift the index by some number of periods.
DataFrame.shift : Shift the index by some number of periods.
Examples
--------
**Series**
>>> s = pd.Series([90, 91, 85])
>>> s
0 90
1 91
2 85
dtype: int64
>>> s.pct_change()
0 NaN
1 0.011111
2 -0.065934
dtype: float64
>>> s.pct_change(periods=2)
0 NaN
1 NaN
2 -0.055556
dtype: float64
See the percentage change in a Series where filling NAs with last
valid observation forward to next valid.
>>> s = pd.Series([90, 91, None, 85])
>>> s
0 90.0
1 91.0
2 NaN
3 85.0
dtype: float64
>>> s.pct_change(fill_method='ffill')
0 NaN
1 0.011111
2 0.000000
3 -0.065934
dtype: float64
**DataFrame**
Percentage change in French franc, Deutsche Mark, and Italian lira from
1980-01-01 to 1980-03-01.
>>> df = pd.DataFrame({
... 'FR': [4.0405, 4.0963, 4.3149],
... 'GR': [1.7246, 1.7482, 1.8519],
... 'IT': [804.74, 810.01, 860.13]},
... index=['1980-01-01', '1980-02-01', '1980-03-01'])
>>> df
FR GR IT
1980-01-01 4.0405 1.7246 804.74
1980-02-01 4.0963 1.7482 810.01
1980-03-01 4.3149 1.8519 860.13
>>> df.pct_change()
FR GR IT
1980-01-01 NaN NaN NaN
1980-02-01 0.013810 0.013684 0.006549
1980-03-01 0.053365 0.059318 0.061876
Percentage of change in GOOG and APPL stock volume. Shows computing
the percentage change between columns.
>>> df = pd.DataFrame({
... '2016': [1769950, 30586265],
... '2015': [1500923, 40912316],
... '2014': [1371819, 41403351]},
... index=['GOOG', 'APPL'])
>>> df
2016 2015 2014
GOOG 1769950 1500923 1371819
APPL 30586265 40912316 41403351
>>> df.pct_change(axis='columns')
2016 2015 2014
GOOG NaN -0.151997 -0.086016
APPL NaN 0.337604 0.012002
s.pct_change(2)
0 NaN
1 NaN
2 2.000000
3 1.000000
4 0.666667
5 0.000000
dtype: float64
计算协方差,会自动省略NA
s1 = pd.Series(np.random.randn(10))
s2 = pd.Series(np.random.randn(10))
s1.cov(s2)
0.05172017259428779
当cov作用于DataFrame的时候,会计算列之间的协方差
frame = pd.DataFrame(np.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e'])
frame.cov()
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
a
b
c
d
e
a
1.737924
0.114498
0.279058
-0.325639
-0.224395
b
0.114498
0.543846
0.421225
-0.103112
-0.373280
c
0.279058
0.421225
1.326316
-0.635491
-0.573974
d
-0.325639
-0.103112
-0.635491
0.978824
0.764530
e
-0.224395
-0.373280
-0.573974
0.764530
0.856515
frame['a'].cov(frame.loc[:, 'b'])
0.11449787431144376
计算相关系数
frame = pd.DataFrame(np.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e'])
frame.corr()
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
a
b
c
d
e
a
1.000000
0.312138
0.173514
0.247459
-0.389265
b
0.312138
1.000000
-0.410371
0.104755
-0.480116
c
0.173514
-0.410371
1.000000
0.124817
-0.230226
d
0.247459
0.104755
0.124817
1.000000
0.259208
e
-0.389265
-0.480116
-0.230226
0.259208
1.000000
frame['a'].corr(frame.iloc[:, 1])
0.3121378592734573
排序
s = pd.Series(np.random.randn(5), index=list('abcde'))
s['d'] = s['b'] # so there's a tie
s
a -2.179226
b 0.614786
c 1.801039
d 0.614786
e -1.604162
dtype: float64
s.rank()
a 1.0
b 3.5
c 5.0
d 3.5
e 2.0
dtype: float64
df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2000', periods=10),
columns = ['A', 'B', 'C', 'D'])
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
B
C
D
2000-01-01
-0.602802
0.294063
-0.803316
-0.500838
2000-01-02
-0.968835
-1.745470
0.027664
-1.012092
2000-01-03
-0.047073
0.440166
-0.338257
1.551372
2000-01-04
0.136861
0.357544
-0.370691
-0.312876
2000-01-05
1.257872
-1.126768
-0.539122
-0.478309
2000-01-06
-0.954518
-0.067380
0.139257
-0.908213
2000-01-07
1.501658
-1.189674
0.794113
-0.155611
2000-01-08
0.400153
0.291841
-0.450429
1.044665
2000-01-09
-0.797415
0.346594
-0.107653
-0.605027
2000-01-10
-0.532034
1.296260
0.303357
-0.056933
df.rolling(window=3).mean()
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
B
C
D
2000-01-01
NaN
NaN
NaN
NaN
2000-01-02
NaN
NaN
NaN
NaN
2000-01-03
-0.539570
-0.337081
-0.371303
0.012814
2000-01-04
-0.293015
-0.315920
-0.227095
0.075468
2000-01-05
0.449220
-0.109686
-0.416023
0.253396
2000-01-06
0.146739
-0.278868
-0.256852
-0.566466
2000-01-07
0.601671
-0.794607
0.131416
-0.514044
2000-01-08
0.315764
-0.321738
0.160980
-0.006386
2000-01-09
0.368132
-0.183746
0.078677
0.094676
2000-01-10
-0.309765
0.644898
-0.084908
0.127569
注意到, window=3, 所以每次的作用于是3行,后面跟的函数是mean, 所以第n行的结果是n, n-1, n-2三行的平均值,前俩行自然而然是NaN
df.expanding(min_periods=3).mean()
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
B
C
D
2000-01-01
NaN
NaN
NaN
NaN
2000-01-02
NaN
NaN
NaN
NaN
2000-01-03
-0.539570
-0.337081
-0.371303
0.012814
2000-01-04
-0.370462
-0.163425
-0.371150
-0.068609
2000-01-05
-0.044795
-0.356093
-0.404744
-0.150549
2000-01-06
-0.196416
-0.307974
-0.314078
-0.276826
2000-01-07
0.046166
-0.433932
-0.155765
-0.259510
2000-01-08
0.090415
-0.343210
-0.192598
-0.096488
2000-01-09
-0.008233
-0.266565
-0.183159
-0.152992
2000-01-10
-0.060613
-0.110283
-0.134508
-0.143386
df['A'][:4].mean()
-0.37046210746336367
注意到 2000-01-03是一样的,后面的就不一样了,这是因为, min_periods=3限制了作用域最小为3行,所以n=4的时候,实际上是会把前面的4行取平均
滑动平均
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
B
C
D
2000-01-01
-0.602802
0.294063
-0.803316
-0.500838
2000-01-02
-0.968835
-1.745470
0.027664
-1.012092
2000-01-03
-0.047073
0.440166
-0.338257
1.551372
2000-01-04
0.136861
0.357544
-0.370691
-0.312876
2000-01-05
1.257872
-1.126768
-0.539122
-0.478309
2000-01-06
-0.954518
-0.067380
0.139257
-0.908213
2000-01-07
1.501658
-1.189674
0.794113
-0.155611
2000-01-08
0.400153
0.291841
-0.450429
1.044665
2000-01-09
-0.797415
0.346594
-0.107653
-0.605027
2000-01-10
-0.532034
1.296260
0.303357
-0.056933
df.ewm(com=0.5, adjust=True).mean()
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
B
C
D
2000-01-01
-0.602802
0.294063
-0.803316
-0.500838
2000-01-02
-0.877327
-1.235587
-0.180081
-0.884278
2000-01-03
-0.302535
-0.075451
-0.289588
0.801941
2000-01-04
-0.005943
0.216821
-0.344332
0.049439
2000-01-05
0.840082
-0.682606
-0.474729
-0.303847
2000-01-06
-0.357961
-0.271892
-0.064843
-0.707311
2000-01-07
0.882352
-0.884027
0.508056
-0.339343
2000-01-08
0.560837
-0.099995
-0.131032
0.583470
2000-01-09
-0.344710
0.197746
-0.115445
-0.208901
2000-01-10
-0.469595
0.930101
0.163761
-0.107587
a = 1 / (1+0.5)
x1 = df.iloc[0, 0]
x2 = df.iloc[1, 0]
(x2 + (1-a) * x1) / (1 + 1 - a)
-0.8773265770527067
df.mean()
A -0.060613
B -0.110283
C -0.134508
D -0.143386
dtype: float64
df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2000', periods=10),
columns = ['A', 'B', 'C', 'D'])
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
B
C
D
2000-01-01
0.371455
-0.191824
-0.146096
-1.347259
2000-01-02
-1.571376
0.061927
0.149302
-0.507093
2000-01-03
0.015607
1.637870
-0.642065
-0.228584
2000-01-04
-0.236157
0.366852
-0.117198
1.373123
2000-01-05
-0.390561
-0.670603
-2.022454
0.964826
2000-01-06
-0.309272
1.234031
-0.383297
0.234326
2000-01-07
-0.925264
0.417228
-0.432956
-1.331263
2000-01-08
0.223505
0.160549
-0.247965
0.262888
2000-01-09
-2.442173
0.757845
-0.704929
0.037361
2000-01-10
-0.936853
-0.479592
-0.274561
0.146732
r = df.rolling(window=3, min_periods=1)
r
Rolling [window=3,min_periods=1,center=False,axis=0]
r.aggregate(np.sum)
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
B
C
D
2000-01-01
0.371455
-0.191824
-0.146096
-1.347259
2000-01-02
-1.199921
-0.129897
0.003207
-1.854353
2000-01-03
-1.184314
1.507972
-0.638858
-2.082937
2000-01-04
-1.791925
2.066648
-0.609961
0.637446
2000-01-05
-0.611110
1.334119
-2.781717
2.109366
2000-01-06
-0.935989
0.930280
-2.522949
2.572276
2000-01-07
-1.625096
0.980656
-2.838707
-0.132111
2000-01-08
-1.011030
1.811808
-1.064218
-0.834049
2000-01-09
-3.143932
1.335622
-1.385850
-1.031014
2000-01-10
-3.155521
0.438802
-1.227455
0.446981
r['A'].aggregate(np.sum)
2000-01-01 0.371455
2000-01-02 -1.199921
2000-01-03 -1.184314
2000-01-04 -1.791925
2000-01-05 -0.611110
2000-01-06 -0.935989
2000-01-07 -1.625096
2000-01-08 -1.011030
2000-01-09 -3.143932
2000-01-10 -3.155521
Freq: D, Name: A, dtype: float64
r[['A', 'B']].aggregate(np.sum)
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
B
2000-01-01
0.371455
-0.191824
2000-01-02
-1.199921
-0.129897
2000-01-03
-1.184314
1.507972
2000-01-04
-1.791925
2.066648
2000-01-05
-0.611110
1.334119
2000-01-06
-0.935989
0.930280
2000-01-07
-1.625096
0.980656
2000-01-08
-1.011030
1.811808
2000-01-09
-3.143932
1.335622
2000-01-10
-3.155521
0.438802
r['A'].aggregate([np.sum, np.mean])
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
sum
mean
2000-01-01
0.371455
0.371455
2000-01-02
-1.199921
-0.599960
2000-01-03
-1.184314
-0.394771
2000-01-04
-1.791925
-0.597308
2000-01-05
-0.611110
-0.203703
2000-01-06
-0.935989
-0.311996
2000-01-07
-1.625096
-0.541699
2000-01-08
-1.011030
-0.337010
2000-01-09
-3.143932
-1.047977
2000-01-10
-3.155521
-1.051840
r.aggregate({'A':np.sum, 'B':np.mean})
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
B
2000-01-01
0.371455
-0.191824
2000-01-02
-1.199921
-0.064949
2000-01-03
-1.184314
0.502657
2000-01-04
-1.791925
0.688883
2000-01-05
-0.611110
0.444706
2000-01-06
-0.935989
0.310093
2000-01-07
-1.625096
0.326885
2000-01-08
-1.011030
0.603936
2000-01-09
-3.143932
0.445207
2000-01-10
-3.155521
0.146267
df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])
df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
three
a
0.560200
0.244413
-1.814612
b
NaN
NaN
NaN
c
0.210847
0.014889
-0.711094
d
NaN
NaN
NaN
e
-0.340756
1.657751
0.419182
f
-0.699982
0.258028
1.324182
g
NaN
NaN
NaN
h
-1.271993
1.477846
0.488302
NaN: Not a Number
df.isnull()
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
three
a
False
False
False
b
True
True
True
c
False
False
False
d
True
True
True
e
False
False
False
f
False
False
False
g
True
True
True
h
False
False
False
df.notnull()
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
three
a
True
True
True
b
False
False
False
c
True
True
True
d
False
False
False
e
True
True
True
f
True
True
True
g
False
False
False
h
True
True
True
当数据求和的时候,缺失值视为0,如果数据全为NA,那么结果也是NA, 额。。。好像还是0,修改了?
df['one'].sum()
-1.541684617991043
df = pd.DataFrame(index=[0,1,2,3,4,5],columns=['one','two'])
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
0
NaN
NaN
1
NaN
NaN
2
NaN
NaN
3
NaN
NaN
4
NaN
NaN
5
NaN
NaN
df['one'].sum()
0
df = pd.DataFrame(np.random.randn(3, 3), index=['a', 'c', 'e'],columns=['one',
'two', 'three'])
df = df.reindex(['a', 'b', 'c'])
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
three
a
0.326460
1.529225
1.230027
b
NaN
NaN
NaN
c
1.296313
0.032379
2.182915
df.fillna(0)
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
three
a
0.326460
1.529225
1.230027
b
0.000000
0.000000
0.000000
c
1.296313
0.032379
2.182915
df #看来上面是返回一个副本
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
three
a
0.326460
1.529225
1.230027
b
NaN
NaN
NaN
c
1.296313
0.032379
2.182915
df.fillna('haha')
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
three
a
0.32646
1.52922
1.23003
b
haha
haha
haha
c
1.29631
0.0323788
2.18292
df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])
df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
three
a
2.218769
-0.742408
-1.068846
b
NaN
NaN
NaN
c
0.467651
0.372357
1.387020
d
NaN
NaN
NaN
e
-0.868840
-0.648827
-2.261319
f
-0.755799
0.159130
-0.129401
g
NaN
NaN
NaN
h
0.703744
-1.665470
0.166229
df.fillna(method='pad') # 或者 method='ffill'
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
three
a
2.218769
-0.742408
-1.068846
b
2.218769
-0.742408
-1.068846
c
0.467651
0.372357
1.387020
d
0.467651
0.372357
1.387020
e
-0.868840
-0.648827
-2.261319
f
-0.755799
0.159130
-0.129401
g
-0.755799
0.159130
-0.129401
h
0.703744
-1.665470
0.166229
可以看到,会用前面的元素来替换
df.fillna(method="backfill") #或者 method='bfill'
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
three
a
2.218769
-0.742408
-1.068846
b
0.467651
0.372357
1.387020
c
0.467651
0.372357
1.387020
d
-0.868840
-0.648827
-2.261319
e
-0.868840
-0.648827
-2.261319
f
-0.755799
0.159130
-0.129401
g
0.703744
-1.665470
0.166229
h
0.703744
-1.665470
0.166229
help(df.fillna)
Help on method fillna in module pandas.core.frame:
fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs) method of pandas.core.frame.DataFrame instance
Fill NA/NaN values using the specified method
Parameters
----------
value : scalar, dict, Series, or DataFrame
Value to use to fill holes (e.g. 0), alternately a
dict/Series/DataFrame of values specifying which value to use for
each index (for a Series) or column (for a DataFrame). (values not
in the dict/Series/DataFrame will not be filled). This value cannot
be a list.
method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
Method to use for filling holes in reindexed Series
pad / ffill: propagate last valid observation forward to next valid
backfill / bfill: use NEXT valid observation to fill gap
axis : {0 or 'index', 1 or 'columns'}
inplace : boolean, default False
If True, fill in place. Note: this will modify any
other views on this object, (e.g. a no-copy slice for a column in a
DataFrame).
limit : int, default None
If method is specified, this is the maximum number of consecutive
NaN values to forward/backward fill. In other words, if there is
a gap with more than this number of consecutive NaNs, it will only
be partially filled. If method is not specified, this is the
maximum number of entries along the entire axis where NaNs will be
filled. Must be greater than 0 if not None.
downcast : dict, default is None
a dict of item->dtype of what to downcast if possible,
or the string 'infer' which will try to downcast to an appropriate
equal type (e.g. float64 to int64 if possible)
See Also
--------
interpolate : Fill NaN values using interpolation.
reindex, asfreq
Returns
-------
filled : DataFrame
Examples
--------
>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0],
... [3, 4, np.nan, 1],
... [np.nan, np.nan, np.nan, 5],
... [np.nan, 3, np.nan, 4]],
... columns=list('ABCD'))
>>> df
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
3 NaN 3.0 NaN 4
Replace all NaN elements with 0s.
>>> df.fillna(0)
A B C D
0 0.0 2.0 0.0 0
1 3.0 4.0 0.0 1
2 0.0 0.0 0.0 5
3 0.0 3.0 0.0 4
We can also propagate non-null values forward or backward.
>>> df.fillna(method='ffill')
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 3.0 4.0 NaN 5
3 3.0 3.0 NaN 4
Replace all NaN elements in column 'A', 'B', 'C', and 'D', with 0, 1,
2, and 3 respectively.
>>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
>>> df.fillna(value=values)
A B C D
0 0.0 2.0 2.0 0
1 3.0 4.0 2.0 1
2 0.0 1.0 2.0 5
3 0.0 3.0 2.0 4
Only replace the first NaN element.
>>> df.fillna(value=values, limit=1)
A B C D
0 0.0 2.0 2.0 0
1 3.0 4.0 NaN 1
2 NaN 1.0 NaN 5
3 NaN 3.0 NaN 4
我们可以利用dropna来舍弃缺失数据所在的轴(默认为行)
df.dropna()
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
three
a
2.218769
-0.742408
-1.068846
c
0.467651
0.372357
1.387020
e
-0.868840
-0.648827
-2.261319
f
-0.755799
0.159130
-0.129401
h
0.703744
-1.665470
0.166229
df = pd.DataFrame({'one':np.arange(10), 'two':np.arange(10), 'three':np.arange(10)})
df.iloc[1, 2] = np.nan
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
three
0
0
0
0.0
1
1
1
NaN
2
2
2
2.0
3
3
3
3.0
4
4
4
4.0
5
5
5
5.0
6
6
6
6.0
7
7
7
7.0
8
8
8
8.0
9
9
9
9.0
df.dropna(axis=1)
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
0
0
0
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
7
7
7
8
8
8
9
9
9
df = pd.DataFrame({'one':[10,20,30,40,50,2000], 'two':[1000,0,30,40,50,60]})
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
0
10
1000
1
20
0
2
30
30
3
40
40
4
50
50
5
2000
60
df.replace({1000:10, 2000:66})
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
0
10
10
1
20
0
2
30
30
3
40
40
4
50
50
5
66
60
help(df.replace)
Help on method replace in module pandas.core.frame:
replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad') method of pandas.core.frame.DataFrame instance
Replace values given in `to_replace` with `value`.
Values of the DataFrame are replaced with other values dynamically.
This differs from updating with ``.loc`` or ``.iloc``, which require
you to specify a location to update with some value.
Parameters
----------
to_replace : str, regex, list, dict, Series, int, float, or None
How to find the values that will be replaced.
* numeric, str or regex:
- numeric: numeric values equal to `to_replace` will be
replaced with `value`
- str: string exactly matching `to_replace` will be replaced
with `value`
- regex: regexs matching `to_replace` will be replaced with
`value`
* list of str, regex, or numeric:
- First, if `to_replace` and `value` are both lists, they
**must** be the same length.
- Second, if ``regex=True`` then all of the strings in **both**
lists will be interpreted as regexs otherwise they will match
directly. This doesn't matter much for `value` since there
are only a few possible substitution regexes you can use.
- str, regex and numeric rules apply as above.
* dict:
- Dicts can be used to specify different replacement values
for different existing values. For example,
``{'a': 'b', 'y': 'z'}`` replaces the value 'a' with 'b' and
'y' with 'z'. To use a dict in this way the `value`
parameter should be `None`.
- For a DataFrame a dict can specify that different values
should be replaced in different columns. For example,
``{'a': 1, 'b': 'z'}`` looks for the value 1 in column 'a'
and the value 'z' in column 'b' and replaces these values
with whatever is specified in `value`. The `value` parameter
should not be ``None`` in this case. You can treat this as a
special case of passing two lists except that you are
specifying the column to search in.
- For a DataFrame nested dictionaries, e.g.,
``{'a': {'b': np.nan}}``, are read as follows: look in column
'a' for the value 'b' and replace it with NaN. The `value`
parameter should be ``None`` to use a nested dict in this
way. You can nest regular expressions as well. Note that
column names (the top-level dictionary keys in a nested
dictionary) **cannot** be regular expressions.
* None:
- This means that the `regex` argument must be a string,
compiled regular expression, or list, dict, ndarray or
Series of such elements. If `value` is also ``None`` then
this **must** be a nested dictionary or Series.
See the examples section for examples of each of these.
value : scalar, dict, list, str, regex, default None
Value to replace any values matching `to_replace` with.
For a DataFrame a dict of values can be used to specify which
value to use for each column (columns not in the dict will not be
filled). Regular expressions, strings and lists or dicts of such
objects are also allowed.
inplace : boolean, default False
If True, in place. Note: this will modify any
other views on this object (e.g. a column from a DataFrame).
Returns the caller if this is True.
limit : int, default None
Maximum size gap to forward or backward fill.
regex : bool or same types as `to_replace`, default False
Whether to interpret `to_replace` and/or `value` as regular
expressions. If this is ``True`` then `to_replace` *must* be a
string. Alternatively, this could be a regular expression or a
list, dict, or array of regular expressions in which case
`to_replace` must be ``None``.
method : {'pad', 'ffill', 'bfill', `None`}
The method to use when for replacement, when `to_replace` is a
scalar, list or tuple and `value` is ``None``.
.. versionchanged:: 0.23.0
Added to DataFrame.
See Also
--------
DataFrame.fillna : Fill NA values
DataFrame.where : Replace values based on boolean condition
Series.str.replace : Simple string replacement.
Returns
-------
DataFrame
Object after replacement.
Raises
------
AssertionError
* If `regex` is not a ``bool`` and `to_replace` is not
``None``.
TypeError
* If `to_replace` is a ``dict`` and `value` is not a ``list``,
``dict``, ``ndarray``, or ``Series``
* If `to_replace` is ``None`` and `regex` is not compilable
into a regular expression or is a list, dict, ndarray, or
Series.
* When replacing multiple ``bool`` or ``datetime64`` objects and
the arguments to `to_replace` does not match the type of the
value being replaced
ValueError
* If a ``list`` or an ``ndarray`` is passed to `to_replace` and
`value` but they are not the same length.
Notes
-----
* Regex substitution is performed under the hood with ``re.sub``. The
rules for substitution for ``re.sub`` are the same.
* Regular expressions will only substitute on strings, meaning you
cannot provide, for example, a regular expression matching floating
point numbers and expect the columns in your frame that have a
numeric dtype to be matched. However, if those floating point
numbers *are* strings, then you can do this.
* This method has *a lot* of options. You are encouraged to experiment
and play with this method to gain intuition about how it works.
* When dict is used as the `to_replace` value, it is like
key(s) in the dict are the to_replace part and
value(s) in the dict are the value parameter.
Examples
--------
**Scalar `to_replace` and `value`**
>>> s = pd.Series([0, 1, 2, 3, 4])
>>> s.replace(0, 5)
0 5
1 1
2 2
3 3
4 4
dtype: int64
>>> df = pd.DataFrame({'A': [0, 1, 2, 3, 4],
... 'B': [5, 6, 7, 8, 9],
... 'C': ['a', 'b', 'c', 'd', 'e']})
>>> df.replace(0, 5)
A B C
0 5 5 a
1 1 6 b
2 2 7 c
3 3 8 d
4 4 9 e
**List-like `to_replace`**
>>> df.replace([0, 1, 2, 3], 4)
A B C
0 4 5 a
1 4 6 b
2 4 7 c
3 4 8 d
4 4 9 e
>>> df.replace([0, 1, 2, 3], [4, 3, 2, 1])
A B C
0 4 5 a
1 3 6 b
2 2 7 c
3 1 8 d
4 4 9 e
>>> s.replace([1, 2], method='bfill')
0 0
1 3
2 3
3 3
4 4
dtype: int64
**dict-like `to_replace`**
>>> df.replace({0: 10, 1: 100})
A B C
0 10 5 a
1 100 6 b
2 2 7 c
3 3 8 d
4 4 9 e
>>> df.replace({'A': 0, 'B': 5}, 100)
A B C
0 100 100 a
1 1 6 b
2 2 7 c
3 3 8 d
4 4 9 e
>>> df.replace({'A': {0: 100, 4: 400}})
A B C
0 100 5 a
1 1 6 b
2 2 7 c
3 3 8 d
4 400 9 e
**Regular expression `to_replace`**
>>> df = pd.DataFrame({'A': ['bat', 'foo', 'bait'],
... 'B': ['abc', 'bar', 'xyz']})
>>> df.replace(to_replace=r'^ba.$', value='new', regex=True)
A B
0 new abc
1 foo new
2 bait xyz
>>> df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True)
A B
0 new abc
1 foo bar
2 bait xyz
>>> df.replace(regex=r'^ba.$', value='new')
A B
0 new abc
1 foo new
2 bait xyz
>>> df.replace(regex={r'^ba.$':'new', 'foo':'xyz'})
A B
0 new abc
1 xyz new
2 bait xyz
>>> df.replace(regex=[r'^ba.$', 'foo'], value='new')
A B
0 new abc
1 new new
2 bait xyz
Note that when replacing multiple ``bool`` or ``datetime64`` objects,
the data types in the `to_replace` parameter must match the data
type of the value being replaced:
>>> df = pd.DataFrame({'A': [True, False, True],
... 'B': [False, True, False]})
>>> df.replace({'a string': 'new value', True: False}) # raises
Traceback (most recent call last):
...
TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str'
This raises a ``TypeError`` because one of the ``dict`` keys is not of
the correct type for replacement.
Compare the behavior of ``s.replace({'a': None})`` and
``s.replace('a', None)`` to understand the pecularities
of the `to_replace` parameter:
>>> s = pd.Series([10, 'a', 'a', 'b', 'a'])
When one uses a dict as the `to_replace` value, it is like the
value(s) in the dict are equal to the `value` parameter.
``s.replace({'a': None})`` is equivalent to
``s.replace(to_replace={'a': None}, value=None, method=None)``:
>>> s.replace({'a': None})
0 10
1 None
2 None
3 b
4 None
dtype: object
When ``value=None`` and `to_replace` is a scalar, list or
tuple, `replace` uses the method parameter (default 'pad') to do the
replacement. So this is why the 'a' values are being replaced by 10
in rows 1 and 2 and 'b' in row 4 in this case.
The command ``s.replace('a', None)`` is actually equivalent to
``s.replace(to_replace='a', value=None, method='pad')``:
>>> s.replace('a', None)
0 10
1 10
2 10
3 b
4 b
dtype: object
df = pd.DataFrame({'one':np.arange(10), 'two':np.arange(2, 12)})
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
0
0
2
1
1
3
2
2
4
3
3
5
4
4
6
5
5
7
6
6
8
7
7
9
8
8
10
9
9
11
df.replace(r'4', 'haha', regex=True)
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
one
two
0
0
2
1
1
3
2
2
4
3
3
5
4
4
6
5
5
7
6
6
8
7
7
9
8
8
10
9
9
11
s = pd.Series(['1', '2', '3'])
s
0 1
1 2
2 3
dtype: object
s.replace(r'3', 4, regex=True)
0 1
1 2
2 4
dtype: object
df = pd.DataFrame({'A': ['bat', 'foo', 'bait'],
'B': ['abc', 'bar', 'xyz']})
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
B
0
bat
abc
1
foo
bar
2
bait
xyz
df.replace(r'ba', 'new', regex=True)
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }
A
B
0
newt
abc
1
foo
newr
2
newit
xyz
看来只有str才能用regex
手机扫一扫
移动阅读更方便
你可能感兴趣的文章