CSPS模拟 57
阅读原文时间:2023年07月15日阅读:1

  rank4大众rank

  T1 天空龙

    让他自由翱翔吧

  T2 巨神兵

    对于n=10的测试点本可以打出非常优秀的分层状压

    但是没有打出来,因为对拓扑图理解不够深刻,纠结于指回的边,实际上只关注伸出的边就可以

    正解则是跟分层一点关系都没有

    记录两层的状态一定要gg的,所以只记录一层

    那么状态定义就不可避免地成了”保证状态是个拓扑图“

    然后内部一片混沌,于是又得容斥。

    假设现在我们有一个完全正确的状态$st$,也就是所有符合条件的状态都被计算一次

    考虑如何转移到更庞大的一个状态$state$

    由于$dp$是枚举所有状态和所有转移,所以我们可以认为$st -> state$的过程会经过所有可能的路径

    将这些路径分类来达到容斥的目的

    假设$size[state^st]=sz$

    那么根据最后一次加入点的个数可以分成:

    $1 C_{sz}^1 条$

    $2 C_{sz}^2 条$

    ${sz} C_{sz}^{sz}条$

    这种组合数的东西,我们十分套路地使用奇加偶减就行了

    具体来说就是转移的时候,如果加入奇数个点则系数为1,否则系数为-1

  T3

    枚举最大公约数,则$ans=\sum \limits_d=1^n \sum \limits_{1<=a,b<=\frac{n}{d}} [gcd(a,b)==1]$

    而$n/d$只有$\sqrt[2]{n}$种取值,所以先上分块

    随后的东西我不会证复杂度了

    $sol1$

    假设a<b枚举$a<\sqrt[2]{\frac{n}{d}}$,变成$\sum\limits_{a=1}^{\frac{n}{d}} [gcd(a,\frac{n}{d*a})==1]$

    设$k=frac{n}{d}$,上莫比乌斯反演$\sum\limits_{a=1}^k \sum\limits_{t|a} u(t)$

    $\sum\limits_{t=1}^k u(t) \sum\limits_{x=1}^{x*t<=k} 1    -phi(x*t)$

    然后直接就是调和级数,时间复杂度$nlogn$, 空间复杂度根号

    可以水到80

    $sol2$

    考虑函数$f(x)=\sum\limits_{1<=a,b<=k} [a*b<=k][gcd(a,b)==1]$

    发现$f(x)$比$f(x-1)$多出的部分就是$\sum[a*b==k][gcd(a,b)==1]$

    也就是把k拆成两部分,不含有相同的质因子

    $delta=2^{d(k)}$

    可以线筛,时间复杂度$n$,空间复杂度$n$

    如果你能结合$sol1,sol2$,同时计算出最优复杂度分界线$n^{\frac{2}{3}}$,可以直接AC

    $sol3$

    还是考虑那个函数,这次上容斥(又是容斥,算上明天的题都3道容斥题了)

    设$g(i)=\sum\limits_{1<=a,b<=k} [a*b<=k]$

    枚举ab的gcd t,则重复的部分就是k中除去$t^2$之后分成两个互质的数的方案数

    这不就是f自己

    $f(i)=g(i)-\sum\limits_{t>1} f(\frac{k}{t^2})$

    递归调用自己,复杂度不会证,听说是$n^{\frac{2}{3}}$

    然后又要玄学计算最优复杂度分界线又是$n^{\frac{2}{3}}$,结合sol1可以用更快的速度AC

  恰完饭再写,饿。

手机扫一扫

移动阅读更方便

阿里云服务器
腾讯云服务器
七牛云服务器

你可能感兴趣的文章