论文学习 Dilated Inception U-Net (DIU-Net) for Brain Tumor Segmentation 1
阅读原文时间:2023年07月09日阅读:1

好记性不如烂笔头 边学习边记录1

主题:脑肿瘤分割 使用基于Unet的端到端的网络结构,在扩张和紧缩路径中加入了Inception模块和空洞卷积。

数据集:Tumor Segmentation (BraTS) 2018 dataset

结论:该方法对神经胶质瘤三个子区中的两个(肿瘤中心和整个肿瘤的分割)的分割效果有所提升。

处理方法:

预处理:(MRI数据预处理

(1)计算每张图中脑的bbox,提取图中选择的区域,从而剔除多余的背景

(2)将裁剪的图像resize到128*128的尺寸

(3)在ground truth分割中丢弃不含有肿瘤的区域

(4)对每个图像应用强度窗函数,使最低的1%和最高的99%像素值分别映射为0和255

(5)对每个图像应用z-score归一化,即减去数据集的均值并除以数据集的标准差

网络模型:

图中下面的数字代表使用的滤波器数量,输入特征图的宽高深,乘以3是因为inception中三路的叠加。

实验:

消融实验为没有使用空洞卷积的Inception Unet网络,十折交叉验证。