源码分析之AsyncTask
阅读原文时间:2023年07月10日阅读:2

AsyncTask在Android中是很常用的异步线程,那么AsyncTask和Thread有什么区别呢?这里将从源码角度深入理解AsyncTask的设计和工作原理,这里的AsyncTask基于SDK-25

分析知识准备

首先我们来看一个生产者与消费者模型的例子

public class ThreadTest {

//产品  
static class ProductObject{  
    public volatile static String value; //volatile线程操作变量可见  
}

//生产者线程  
static class Producer extends Thread{  
    Object lock;  
    public Producer(Object lock) {  
        this.lock = lock;  
    }  
    @Override  
    public void run() {  
        while(true){  
            synchronized (lock) {  
                if(ProductObject.value != null){  
                    try {  
                        lock.wait(); //产品还没有被消费,等待  
                    } catch (InterruptedException e) {  
                        e.printStackTrace();  
                    }  
                }  
                ProductObject.value = "NO:"+System.currentTimeMillis();  
                System.out.println("生产产品:"+ProductObject.value);  
                lock.notify(); //生产完成,通知消费者消费  
            }  
        }  
    }  
}

//消费者线程  
static class Consumer extends Thread{  
    Object lock;  
    public Consumer(Object lock) {  
        this.lock = lock;  
    }  
    @Override  
    public void run() {  
        while(true){  
            synchronized (lock) {  
                if(ProductObject.value == null){  
                    try {  
                        lock.wait(); //等待,阻塞  
                    } catch (InterruptedException e) {  
                        e.printStackTrace();  
                    }  
                }  
                System.out.println("消费产品:"+ProductObject.value);  
                ProductObject.value = null;  
                lock.notify(); //消费完成,通知生产者,继续生产  
            }  
        }  
    }  
}

public static void main(String\[\] args) {  
    Object lock = new Object();  
    new Producer(lock).start();  
    new Consumer(lock).start();  
}  

}

上面的例子关键点在于两个,其一是 volatile,使得线程间可见,第二个点在于互斥锁,这样就可以使得有商品的时候就要通知消费者消费,同时 wait,那么消费者收到消息开始消费,消费完毕通知生产者继续生产,从而不断生产,这样比轮询方式更加节省资源

在了解完上面的例子以后,我们就可以着手分析AsyncTask的源代码了

首先,我们在AsyncTask首先看其构造方法

private final WorkerRunnable mWorker;
private final FutureTask mFuture;
···
public AsyncTask() {
mWorker = new WorkerRunnable() {
public Result call() throws Exception {
mTaskInvoked.set(true);
Result result = null;
try {
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
//noinspection unchecked
result = doInBackground(mParams);
Binder.flushPendingCommands();
} catch (Throwable tr) {
mCancelled.set(true);
throw tr;
} finally {
postResult(result);
}
return result;
}
};

mFuture = new FutureTask<Result>(mWorker) {  
    @Override  
    protected void done() {  
        try {  
            postResultIfNotInvoked(get());  
        } catch (InterruptedException e) {  
            android.util.Log.w(LOG\_TAG, e);  
        } catch (ExecutionException e) {  
            throw new RuntimeException("An error occurred while executing doInBackground()",  
                    e.getCause());  
        } catch (CancellationException e) {  
            postResultIfNotInvoked(null);  
        }  
    }  
};  

}

这里首先给WorkerRunnableFuture进行了初始化,那么为何要初始化这两个变量呢?

这里就要说到常用的两个方法了,doInBackground(),这个方法是在子线程里面完成的,另一个方法就是onPostExecute(),而这个方法是存在于主线程的,那么也就是说子线程执行完将执行的结果传递到了主线程中,实现了线程间的通信,那么最关键的问题来了,这个通信是怎么实现的呢?
通常在子线程中执行的任务,是没有返回结果的,例如Runnable的源代码如下,就没有返回结果

public interface Runnable {
/**
* When an object implementing interface Runnable is used
* to create a thread, starting the thread causes the object's
* run method to be called in that separately executing
* thread.
*


* The general contract of the method run is that it may
* take any action whatsoever.
*
* @see java.lang.Thread#run()
*/
public abstract void run();
}

那么,要怎么才能得到返回值呢,这里首先想到的就是Callable接口,那么再看看Callable的源代码

@FunctionalInterface
public interface Callable {
/**
* Computes a result, or throws an exception if unable to do so.
*
* @return computed result
* @throws Exception if unable to compute a result
*/
V call() throws Exception;
}

可以看到,这是一个泛型方法,是有返回值的,但是其本身确是不能直接执行的,需要借助其他类,接下来再看一看源代码中涉及到的Future接口

public interface Future {

/\*\*  
 \* Attempts to cancel execution of this task.  This attempt will  
 \* fail if the task has already completed, has already been cancelled,  
 \* or could not be cancelled for some other reason. If successful,  
 \* and this task has not started when {@code cancel} is called,  
 \* this task should never run.  If the task has already started,  
 \* then the {@code mayInterruptIfRunning} parameter determines  
 \* whether the thread executing this task should be interrupted in  
 \* an attempt to stop the task.  
 \*  
 \* <p>After this method returns, subsequent calls to {@link #isDone} will  
 \* always return {@code true}.  Subsequent calls to {@link #isCancelled}  
 \* will always return {@code true} if this method returned {@code true}.  
 \*  
 \* @param mayInterruptIfRunning {@code true} if the thread executing this  
 \* task should be interrupted; otherwise, in-progress tasks are allowed  
 \* to complete  
 \* @return {@code false} if the task could not be cancelled,  
 \* typically because it has already completed normally;  
 \* {@code true} otherwise  
 \*/  
boolean cancel(boolean mayInterruptIfRunning);

/\*\*  
 \* Returns {@code true} if this task was cancelled before it completed  
 \* normally.  
 \*  
 \* @return {@code true} if this task was cancelled before it completed  
 \*/  
boolean isCancelled();

/\*\*  
 \* Returns {@code true} if this task completed.  
 \*  
 \* Completion may be due to normal termination, an exception, or  
 \* cancellation -- in all of these cases, this method will return  
 \* {@code true}.  
 \*  
 \* @return {@code true} if this task completed  
 \*/  
boolean isDone();

/\*\*  
 \* Waits if necessary for the computation to complete, and then  
 \* retrieves its result.  
 \*  
 \* @return the computed result  
 \* @throws CancellationException if the computation was cancelled  
 \* @throws ExecutionException if the computation threw an  
 \* exception  
 \* @throws InterruptedException if the current thread was interrupted  
 \* while waiting  
 \*/  
V get() throws InterruptedException, ExecutionException;

/\*\*  
 \* Waits if necessary for at most the given time for the computation  
 \* to complete, and then retrieves its result, if available.  
 \*  
 \* @param timeout the maximum time to wait  
 \* @param unit the time unit of the timeout argument  
 \* @return the computed result  
 \* @throws CancellationException if the computation was cancelled  
 \* @throws ExecutionException if the computation threw an  
 \* exception  
 \* @throws InterruptedException if the current thread was interrupted  
 \* while waiting  
 \* @throws TimeoutException if the wait timed out  
 \*/  
V get(long timeout, TimeUnit unit)  
    throws InterruptedException, ExecutionException, TimeoutException;  

}

Future类中,有好几个方法,而这些方法都是有返回值的,那么RunnableFutureFutureTask有什么关系呢,产看源码便可得知,FutureTask实际上是实现了RunnableFuture接口

public class FutureTask implements RunnableFuture{ ··· }

RunnableFuture又继承了RunnableFuture

public interface RunnableFuture extends Runnable, Future { void run(); }

那也就是说,FutureTask既可以在子线程中执行,也可以获得执行结果,下面使用一个例子来说明FutureTask

public class FutureTest {

public static void main(String\[\] args) {  
    Task work = new Task();  
    FutureTask<Integer> future = new FutureTask<Integer>(work){  
        @Override  
        protected void done() { //异步任务执行完成,回调  
            try {  
                System.out.println("done:" + get()); //get()获取异步任务的返回值,这是个阻塞方法  
            } catch (InterruptedException e) {  
                e.printStackTrace();  
            } catch (ExecutionException e) {  
                e.printStackTrace();  
            }  
        }  
    };  
    //线程池(使用了预定义的配置)  
    ExecutorService executor = Executors.newCachedThreadPool();  
    executor.execute(future);  
}

//异步任务  
static class Task implements Callable<Integer>{

    @Override  
    public Integer call() throws Exception {//返回异步任务的执行结果  
        int i = 0;  
        for (; i < 10; i++) {  
            try {  
                System.out.println(Thread.currentThread().getName() + "\_" + i);  
                Thread.sleep(500);  
            } catch (InterruptedException e) {  
                e.printStackTrace();  
            }  
        }  
        return i;  
    }  
}  

}

上面的例子可以看出,在使用了Callable的时候,需要借助FutureTask来包装,然后使用Executorexecute()方法来执行,那么是怎么得到异步任务的返回值呢,在上面的例子中,我们可以看到,其返回值的获取是通过future.get()得到的,然而这个get()方法确是被阻塞的,只有在异步任务完成的时候才能获取到其结果,那我们怎么才能知道异步任务时候执行完毕呢,这里就可以实现FutureTaskdone()方法,当异步任务执行完毕以后会回调这个方法,上述例子其实解释了AsyncTask的实现逻辑,call()方法是在子线程中完成,这也就是doInBackground()的实现,在主线程中获得结果,这是在onPostExecute()使用了get()方法,那也就是说AsyncTask就是通过这一套方法去实现的

从这里我们可以总结出FutureTask为异步任务提供了诸多便利性,包括

  1. 获取异步任务的返回值
  2. 监听异步任务的执行情况
  3. 取消异步任务

那么在AsyncTask中,WorkerRunnable又是啥呢,其实就是一个内部类,对Callable进行了封装

private static abstract class WorkerRunnable implements Callable { Params[] mParams; }

源代码分析

有了以上知识储备,我们就可以动手分析AsyncTask源代码了
拿到源代码,不同的人有不同的分析习惯,这里我按照我的习惯对源代码进行一次分析

首先,因为我们分析源代码是为了更好的去使用,而使用的话,第一个关注的就应该是构造方法,回到之前的的构造方法,这里要开始对构造方法开始入手分析了

private final WorkerRunnable mWorker;
private final FutureTask mFuture;
private final AtomicBoolean mCancelled = new AtomicBoolean();
private final AtomicBoolean mTaskInvoked = new AtomicBoolean();
···
public AsyncTask() {
mWorker = new WorkerRunnable() {
public Result call() throws Exception {
//设置线程调用
mTaskInvoked.set(true);
Result result = null;
try {
//设置线程优先级,其给定值为10
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
//调用doInBackground()方法得到返回值
result = doInBackground(mParams);
//将当前线程中的Binder命令发送至kernel
Binder.flushPendingCommands();
} catch (Throwable tr) {
//发生异常则取消线程调用设置
mCancelled.set(true);
throw tr;
} finally {
//执行postResult()方法
postResult(result);
}
return result;
}
};

mFuture = new FutureTask<Result>(mWorker) {  
    @Override  
    protected void done() {  
        try {  
            //执行postResultIfNotInvoked()方法  
            postResultIfNotInvoked(get());  
        } catch (InterruptedException e) {  
            android.util.Log.w(LOG\_TAG, e);  
        } catch (ExecutionException e) {  
            throw new RuntimeException("An error occurred while executing doInBackground()",  
                    e.getCause());  
        } catch (CancellationException e) {  
            postResultIfNotInvoked(null);  
        }  
    }  
};  

}

以上就是AsyncTask的构造方法了,在构造方法上有一句说明,这个构造方法必须在UI线程中创建,这一点很好理解,因为其有需要再主线程中执行的地方,后面会说到,那么这个构造方法干了什么事情呢,很简单,这里新建了两个对象,首先是WorkerRunnable,而这个WorkerRunnable则是实现自Callable接口,主要是要使用其call()方法,为了返回参数,并没有什么特别之处,再其内部则实现了call()方法,而其自生是无法执行的,需要找一个包装类,而这个包装类就是FutureTask,通过之前的分析,这里就不再多赘述关于FutureTask的东西了,这里实现了done()方法,也就是线程执行完毕调用的方法,简单点来说就是在call()方法中执行,在done()中获得执行的返回结果,上述涉及到一个内部类和三个自定义的方法,那么接下来我们看一看这个内部类和三个方法都干了啥

这里的WorkerRunnable,正如前面所说,这里除了实现Callable就啥也没干,还是个抽象方法,这里将实现放在了构造方法中

private static abstract class WorkerRunnable implements Callable { Params[] mParams; }

首先是doInBackground()方法,前面讲到,这个方法在子线程中完成,那么这里的子线程是哪个呢,其实就是WorkerThread,这个方法是一个抽象方法,放在子线程中执行,其具体实现由调用者完成

@WorkerThread protected abstract Result doInBackground(Params… params);

再看postResult()方法,这里获取了一个Handler,然后发送了一个消息,这里就是子线程能够通信主线程的地方了

private Result postResult(Result result) {
@SuppressWarnings("unchecked")
Message message = getHandler().obtainMessage(MESSAGE_POST_RESULT,
new AsyncTaskResult(this, result));
message.sendToTarget();
return result;
}

那么到这里,我们关注的重点就来了,子线程是怎么告诉主线程的呢,要知道其中的原因,我们就需要去看看代码里面是怎么实现的
我们先看发送了什么消息,也就是AsyncTaskResult里面干了啥,查看代码发现,其就是做了参数传递的任务

@SuppressWarnings({"RawUseOfParameterizedType"})
private static class AsyncTaskResult {
final AsyncTask mTask;
final Data[] mData;

AsyncTaskResult(AsyncTask task, Data... data) {  
    mTask = task;  
    mData = data;  
}  

}

那么接下来的重点就是getHandler()方法了,这里拿到AsyncTask.class就上了锁了,这也很好理解,不上锁其他线程走到这里会产生安全隐患,然后返回sHandler,那再继续看看InternalHandler又是个什么吧

private static InternalHandler sHandler;
···
private static Handler getHandler() {
synchronized (AsyncTask.class) {
if (sHandler == null) {
sHandler = new InternalHandler();
}
return sHandler;
}
}

这里就是了,在构造方法里面super(Looper.getMainLooper()),也就说明了这个方法是在主线程中执行的,在主线程中对Message进行处理,这里又涉及到两个方法,一个是finish(),还有一个是onProgressUpdate(),那么好吧,再去看看这两个方法在干啥

private static final int MESSAGE_POST_RESULT = 0x1;
private static final int MESSAGE_POST_PROGRESS = 0x2;
···
private static class InternalHandler extends Handler {
public InternalHandler() {
super(Looper.getMainLooper());
}

@SuppressWarnings({"unchecked", "RawUseOfParameterizedType"})  
@Override  
public void handleMessage(Message msg) {  
    AsyncTaskResult<?> result = (AsyncTaskResult<?>) msg.obj;  
    switch (msg.what) {  
        case MESSAGE\_POST\_RESULT:  
            // There is only one result  
            result.mTask.finish(result.mData\[0\]);  
            break;  
        case MESSAGE\_POST\_PROGRESS:  
            result.mTask.onProgressUpdate(result.mData);  
            break;  
    }  
}  

}

首先是又调了isCancelled(),判断是否取消,前面构造函数的时候见过这个,这是在异常发生的时候才设置为true的,那么如果不发生异常,这里应该就是为false的,但在找源代码时发现,另一个方法也对这个参数进行了设置,那就是cancel(),所以在不发生异常和取消的时候应该是为true的,接下来是onCancelled()方法,这里是不做任何操作的,这也是主线程中的方法,还有就是onPostExecute()方法,然后会设置状态,其默认状态是PENDING

private volatile Status mStatus = Status.PENDING;
···
public enum Status {
PENDING,
RUNNING,
FINISHED,
}
···
private void finish(Result result) {
if (isCancelled()) {
onCancelled(result);
} else {
onPostExecute(result);
}
mStatus = Status.FINISHED;
}
@SuppressWarnings({"UnusedDeclaration"})
@MainThread
protected void onPostExecute(Result result) {
}

@SuppressWarnings({"UnusedParameters"})
@MainThread
protected void onCancelled(Result result) {
onCancelled();
}

@MainThread
protected void onCancelled() {
}

public final boolean isCancelled() {
return mCancelled.get();
}
···
public final boolean cancel(boolean mayInterruptIfRunning) {
mCancelled.set(true);
return mFuture.cancel(mayInterruptIfRunning);
}

然后是onProgressUpdate()方法,那么这里做了啥呢,嗯~啥也没有,交给调用者在继承时可以使用

@SuppressWarnings({"UnusedDeclaration"})
@MainThread
protected void onProgressUpdate(Progress… values) {
}

来看构造方法中涉及到的最后一个方法postResultIfNotInvoked(),这个方法又干了啥了,首先获得了mTaskInvoked的状态,整个AsyncTask只有构造方法处设置了这个值,然后判断是否执行postResult()方法

private void postResultIfNotInvoked(Result result) {
final boolean wasTaskInvoked = mTaskInvoked.get();
if (!wasTaskInvoked) {
postResult(result);
}
}

至此构造方法分析完成,可以看到在构造方法中,其主要做的工作最主要的就是搭建好了子线程和主线程沟通的桥梁

在新建AsyncTask对象以后,要执行的话,需要使用execute()去开始执行
那么我们就从这里入手,看看其具体是怎么工作的,可以看到无论是构造方法还是启动方法,都是需要在主线程中完成的,在execute()中,做了些什么呢,在这之前我们先看看传递的sDefaultExecutor是啥

@MainThread
public final AsyncTask execute(Params… params) {
return executeOnExecutor(sDefaultExecutor, params);
}

这其实是一个线程池,任务调度的线程池,可以看到SerialExecutor实际上是实现了Executor接口,其作用就是将任务添加到双向队列,然后不断地取出执行取出执行,那么THREAD_POOL_EXECUTOR也应该是一个线程池,那这又是啥呢,去看一看这个玩意儿就是到了

public static final Executor SERIAL_EXECUTOR = new SerialExecutor();
private static volatile Executor sDefaultExecutor = SERIAL_EXECUTOR;
···
private static class SerialExecutor implements Executor {
//定义了一个双向队列,用来存储线程
final ArrayDeque mTasks = new ArrayDeque();
Runnable mActive;

public synchronized void execute(final Runnable r) {  
    //向队列中添加线程  
    mTasks.offer(new Runnable() {  
        public void run() {  
            try {  
                //线程运行  
                r.run();  
            } finally {  
                //执行scheduleNext()方法  
                scheduleNext();  
            }  
        }  
    });  
    if (mActive == null) {  
        scheduleNext();  
    }  
}

//从队列中取出线程并执行  
protected synchronized void scheduleNext() {  
    if ((mActive = mTasks.poll()) != null) {  
        THREAD\_POOL\_EXECUTOR.execute(mActive);  
    }  
}  

}

下列代码就是初始化了线程池的参数,指定了线程数量

//获得可用CPU数量
private static final int CPU_COUNT = Runtime.getRuntime().availableProcessors();
//设置核心线程池数量其范围[2,4],无论是否使用都存在
private static final int CORE_POOL_SIZE = Math.max(2, Math.min(CPU_COUNT - 1, 4));
//设置最大线程数量
private static final int MAXIMUM_POOL_SIZE = CPU_COUNT * 2 + 1;
//设置闲置回收时间,也就是说线程在这个时间内没有活动的话,会被回收
private static final int KEEP_ALIVE_SECONDS = 30;
//设置线程工厂,通过这个创建线程
private static final ThreadFactory sThreadFactory = new ThreadFactory() {
//创建线程安全的线程个数计数器
private final AtomicInteger mCount = new AtomicInteger(1);

public Thread newThread(Runnable r) {  
    return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());  
}  

};
//设置任务队列大小
private static final BlockingQueue sPoolWorkQueue =
new LinkedBlockingQueue(128);
//设置线程池
public static final Executor THREAD_POOL_EXECUTOR;

//初始化线程池
static {
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(
CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE_SECONDS, TimeUnit.SECONDS,
sPoolWorkQueue, sThreadFactory);
//打开核心线程池的超时时间
threadPoolExecutor.allowCoreThreadTimeOut(true);
THREAD_POOL_EXECUTOR = threadPoolExecutor;
}

所以在执行scheduleNext()的时候,会将THREAD_POOL_EXECUTOR中设置好的线程全部取出来,用来执行后面的任务,其执行的任务就是execute()方法所指定的任务,在executeOnExecutor()方法中,由于前面初始化完成,这里的状态应该是PENDING,之后还设置了mWorker的参数,然后会执行线程池的方法,然后据开始执行任务了,前面没有涉及到的方法还有一个,那我们接下来看看

@MainThread
public final AsyncTask executeOnExecutor(Executor exec,
Params… params) {
if (mStatus != Status.PENDING) {
switch (mStatus) {
case RUNNING:
throw new IllegalStateException("Cannot execute task:"
+ " the task is already running.");
case FINISHED:
throw new IllegalStateException("Cannot execute task:"
+ " the task has already been executed "
+ "(a task can be executed only once)");
}
}
mStatus = Status.RUNNING;
onPreExecute();
mWorker.mParams = params;
exec.execute(mFuture);
return this;
}

onPreExecute(),这个方法由调用者在继承时候能够使用

@MainThread
protected void onPreExecute() {
}

至此,AsyncTask的执行方法也分析完了,那么我们接下来看看还有什么方法没有涉及到,没有涉及到的方法都是public属性和方法

AsyncTask的公共方法

//这个方法设置为public,那么就意味着我们可以自定义线程池
public static void setDefaultExecutor(Executor exec) {
sDefaultExecutor = exec;
}

//这个方法意味着我们可以获得其状态,配合枚举值使用
public enum Status {
PENDING,
RUNNING,
FINISHED,
}
···
public final Status getStatus() {
return mStatus;
}

//查看是非被取消
public final boolean isCancelled() {
return mCancelled.get();
}

//取消异步任务
public final boolean cancel(boolean mayInterruptIfRunning) {
mCancelled.set(true);
return mFuture.cancel(mayInterruptIfRunning);
}

//获取返回结果,注意:这个方法是阻塞式的
public final Result get() throws InterruptedException, ExecutionException {
return mFuture.get();
}

//同上
public final Result get(long timeout, TimeUnit unit) throws InterruptedException,
ExecutionException, TimeoutException {
return mFuture.get(timeout, unit);
}

//自定义的线程池可以从这个方法启动
@MainThread
public final AsyncTask executeOnExecutor(Executor exec,
Params… params) {
if (mStatus != Status.PENDING) {
switch (mStatus) {
case RUNNING:
throw new IllegalStateException("Cannot execute task:"
+ " the task is already running.");
case FINISHED:
throw new IllegalStateException("Cannot execute task:"
+ " the task has already been executed "
+ "(a task can be executed only once)");
}
}
mStatus = Status.RUNNING;
onPreExecute();
mWorker.mParams = params;
exec.execute(mFuture);
return this;
}

//使用默认线程池启动异步任务
@MainThread
public static void execute(Runnable runnable) {
sDefaultExecutor.execute(runnable);
}

总结

AsyncTask的实例化过程,其本质上就是实例化了一个FutureTask

其执行过程Executor.execute(mFuture) -> SerialExecutor.mTasks(队列) -> (线程池)THREAD_POOL_EXECUTOR.execute

线程池中的所有线程,为了执行异步任务

如果当前线程池中的数量小于corePoolSize,创建并添加的任务
如果当前线程池中的数量等于corePoolSize,缓冲队列workQueue未满,那么任务被放入缓冲队列、等待任务调度执行
如果当前线程池中的数量大于corePoolSize,缓冲队列workQueue已满,并且线程池中的数量小于maximumPoolSize,新提交任务会创建新线程执行任务
如果当前线程池中的数量大于corePoolSize,缓冲队列workQueue已满,并且线程池中的数量等于maximumPoolSize,新提交任务由Handler处理
当线程池中的线程大于corePoolSize时,多余线程空闲时间超过keepAliveTime时,会关闭这部分线程

线程池在添加时候是串行的,在执行任务的时候是并行的

附录(源代码)

package android.os;

import android.annotation.MainThread;
import android.annotation.WorkerThread;

import java.util.ArrayDeque;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.Callable;
import java.util.concurrent.CancellationException;
import java.util.concurrent.Executor;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicInteger;

/**
*

AsyncTask enables proper and easy use of the UI thread. This class allows you * to perform background operations and publish results on the UI thread without * having to manipulate threads and/or handlers.


*
*

AsyncTask is designed to be a helper class around {@link Thread} and {@link Handler} * and does not constitute a generic threading framework. AsyncTasks should ideally be * used for short operations (a few seconds at the most.) If you need to keep threads * running for long periods of time, it is highly recommended you use the various APIs * provided by the java.util.concurrent package such as {@link Executor}, * {@link ThreadPoolExecutor} and {@link FutureTask}.


*
*

An asynchronous task is defined by a computation that runs on a background thread and * whose result is published on the UI thread. An asynchronous task is defined by 3 generic * types, called Params, Progress and Result, * and 4 steps, called onPreExecute, doInBackground, * onProgressUpdate and onPostExecute.


*
*
*

Developer Guides

*

For more information about using tasks and threads, read the * Processes and * Threads developer guide.

*

*
*

Usage


*

AsyncTask must be subclassed to be used. The subclass will override at least * one method ({@link #doInBackground}), and most often will override a * second one ({@link #onPostExecute}.)


*
*

Here is an example of subclassing:


*
  
 * private class DownloadFilesTask extends AsyncTask<URL, Integer, Long> {  
 *     protected Long doInBackground(URL… urls) {  
 *         int count = urls.length;  
 *         long totalSize = 0;  
 *         for (int i = 0; i < count; i++) {  
 *             totalSize += Downloader.downloadFile(urls[i]);  
 *             publishProgress((int) ((i / (float) count) * 100));  
 *             // Escape early if cancel() is called  
 *             if (isCancelled()) break;  
 *         }  
 *         return totalSize;  
 *     }  
 *  
 *     protected void onProgressUpdate(Integer… progress) {  
 *         setProgressPercent(progress[0]);  
 *     }  
 *  
 *     protected void onPostExecute(Long result) {  
 *         showDialog("Downloaded " + result + " bytes");  
 *     }  
 * }  
 * 

*
*

Once created, a task is executed very simply:


*
  
 * new DownloadFilesTask().execute(url1, url2, url3);  
 * 

*
*

AsyncTask's generic types


*

The three types used by an asynchronous task are the following:


*
    *
  1. Params, the type of the parameters sent to the task upon * execution.
  2. *
  3. Progress, the type of the progress units published during * the background computation.
  4. *
  5. Result, the type of the result of the background * computation.
  6. *

*

Not all types are always used by an asynchronous task. To mark a type as unused, * simply use the type {@link Void}:


*
  
 * private class MyTask extends AsyncTask<Void, Void, Void> { … }  
 * 

*
*

The 4 steps


*

When an asynchronous task is executed, the task goes through 4 steps:


*
    *
  1. {@link #onPreExecute()}, invoked on the UI thread before the task * is executed. This step is normally used to setup the task, for instance by * showing a progress bar in the user interface.
  2. *
  3. {@link #doInBackground}, invoked on the background thread * immediately after {@link #onPreExecute()} finishes executing. This step is used * to perform background computation that can take a long time. The parameters * of the asynchronous task are passed to this step. The result of the computation must * be returned by this step and will be passed back to the last step. This step * can also use {@link #publishProgress} to publish one or more units * of progress. These values are published on the UI thread, in the * {@link #onProgressUpdate} step.
  4. *
  5. {@link #onProgressUpdate}, invoked on the UI thread after a * call to {@link #publishProgress}. The timing of the execution is * undefined. This method is used to display any form of progress in the user * interface while the background computation is still executing. For instance, * it can be used to animate a progress bar or show logs in a text field.
  6. *
  7. {@link #onPostExecute}, invoked on the UI thread after the background * computation finishes. The result of the background computation is passed to * this step as a parameter.
  8. *

*
*

Cancelling a task


*

A task can be cancelled at any time by invoking {@link #cancel(boolean)}. Invoking * this method will cause subsequent calls to {@link #isCancelled()} to return true. * After invoking this method, {@link #onCancelled(Object)}, instead of * {@link #onPostExecute(Object)} will be invoked after {@link #doInBackground(Object[])} * returns. To ensure that a task is cancelled as quickly as possible, you should always * check the return value of {@link #isCancelled()} periodically from * {@link #doInBackground(Object[])}, if possible (inside a loop for instance.)


*
*

Threading rules


*

There are a few threading rules that must be followed for this class to * work properly:


*
    *
  • The AsyncTask class must be loaded on the UI thread. This is done * automatically as of {@link android.os.Build.VERSION_CODES#JELLY_BEAN}.
  • *
  • The task instance must be created on the UI thread.
  • *
  • {@link #execute} must be invoked on the UI thread.
  • *
  • Do not call {@link #onPreExecute()}, {@link #onPostExecute}, * {@link #doInBackground}, {@link #onProgressUpdate} manually.
  • *
  • The task can be executed only once (an exception will be thrown if * a second execution is attempted.)
  • *

*
*

Memory observability


*

AsyncTask guarantees that all callback calls are synchronized in such a way that the following * operations are safe without explicit synchronizations.


*
    *
  • Set member fields in the constructor or {@link #onPreExecute}, and refer to them * in {@link #doInBackground}. *
  • Set member fields in {@link #doInBackground}, and refer to them in * {@link #onProgressUpdate} and {@link #onPostExecute}. *

*
*

Order of execution


*

When first introduced, AsyncTasks were executed serially on a single background * thread. Starting with {@link android.os.Build.VERSION_CODES#DONUT}, this was changed * to a pool of threads allowing multiple tasks to operate in parallel. Starting with * {@link android.os.Build.VERSION_CODES#HONEYCOMB}, tasks are executed on a single * thread to avoid common application errors caused by parallel execution.


*

If you truly want parallel execution, you can invoke * {@link #executeOnExecutor(java.util.concurrent.Executor, Object[])} with * {@link #THREAD_POOL_EXECUTOR}.


*/
public abstract class AsyncTask {
private static final String LOG_TAG = "AsyncTask";

private static final int CPU\_COUNT = Runtime.getRuntime().availableProcessors();  
// We want at least 2 threads and at most 4 threads in the core pool,  
// preferring to have 1 less than the CPU count to avoid saturating  
// the CPU with background work  
private static final int CORE\_POOL\_SIZE = Math.max(2, Math.min(CPU\_COUNT - 1, 4));  
private static final int MAXIMUM\_POOL\_SIZE = CPU\_COUNT \* 2 + 1;  
private static final int KEEP\_ALIVE\_SECONDS = 30;

private static final ThreadFactory sThreadFactory = new ThreadFactory() {  
    private final AtomicInteger mCount = new AtomicInteger(1);

    public Thread newThread(Runnable r) {  
        return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());  
    }  
};

private static final BlockingQueue<Runnable> sPoolWorkQueue =  
        new LinkedBlockingQueue<Runnable>(128);

/\*\*  
 \* An {@link Executor} that can be used to execute tasks in parallel.  
 \*/  
public static final Executor THREAD\_POOL\_EXECUTOR;

static {  
    ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(  
            CORE\_POOL\_SIZE, MAXIMUM\_POOL\_SIZE, KEEP\_ALIVE\_SECONDS, TimeUnit.SECONDS,  
            sPoolWorkQueue, sThreadFactory);  
    threadPoolExecutor.allowCoreThreadTimeOut(true);  
    THREAD\_POOL\_EXECUTOR = threadPoolExecutor;  
}

/\*\*  
 \* An {@link Executor} that executes tasks one at a time in serial  
 \* order.  This serialization is global to a particular process.  
 \*/  
public static final Executor SERIAL\_EXECUTOR = new SerialExecutor();

private static final int MESSAGE\_POST\_RESULT = 0x1;  
private static final int MESSAGE\_POST\_PROGRESS = 0x2;

private static volatile Executor sDefaultExecutor = SERIAL\_EXECUTOR;  
private static InternalHandler sHandler;

private final WorkerRunnable<Params, Result> mWorker;  
private final FutureTask<Result> mFuture;

private volatile Status mStatus = Status.PENDING;

private final AtomicBoolean mCancelled = new AtomicBoolean();  
private final AtomicBoolean mTaskInvoked = new AtomicBoolean();

private static class SerialExecutor implements Executor {  
    final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();  
    Runnable mActive;

    public synchronized void execute(final Runnable r) {  
        mTasks.offer(new Runnable() {  
            public void run() {  
                try {  
                    r.run();  
                } finally {  
                    scheduleNext();  
                }  
            }  
        });  
        if (mActive == null) {  
            scheduleNext();  
        }  
    }

    protected synchronized void scheduleNext() {  
        if ((mActive = mTasks.poll()) != null) {  
            THREAD\_POOL\_EXECUTOR.execute(mActive);  
        }  
    }  
}

/\*\*  
 \* Indicates the current status of the task. Each status will be set only once  
 \* during the lifetime of a task.  
 \*/  
public enum Status {  
    /\*\*  
     \* Indicates that the task has not been executed yet.  
     \*/  
    PENDING,  
    /\*\*  
     \* Indicates that the task is running.  
     \*/  
    RUNNING,  
    /\*\*  
     \* Indicates that {@link AsyncTask#onPostExecute} has finished.  
     \*/  
    FINISHED,  
}

private static Handler getHandler() {  
    synchronized (AsyncTask.class) {  
        if (sHandler == null) {  
            sHandler = new InternalHandler();  
        }  
        return sHandler;  
    }  
}

/\*\* @hide \*/  
public static void setDefaultExecutor(Executor exec) {  
    sDefaultExecutor = exec;  
}

/\*\*  
 \* Creates a new asynchronous task. This constructor must be invoked on the UI thread.  
 \*/  
public AsyncTask() {  
    mWorker = new WorkerRunnable<Params, Result>() {  
        public Result call() throws Exception {  
            mTaskInvoked.set(true);  
            Result result = null;  
            try {  
                Process.setThreadPriority(Process.THREAD\_PRIORITY\_BACKGROUND);  
                //noinspection unchecked  
                result = doInBackground(mParams);  
                Binder.flushPendingCommands();  
            } catch (Throwable tr) {  
                mCancelled.set(true);  
                throw tr;  
            } finally {  
                postResult(result);  
            }  
            return result;  
        }  
    };

    mFuture = new FutureTask<Result>(mWorker) {  
        @Override  
        protected void done() {  
            try {  
                postResultIfNotInvoked(get());  
            } catch (InterruptedException e) {  
                android.util.Log.w(LOG\_TAG, e);  
            } catch (ExecutionException e) {  
                throw new RuntimeException("An error occurred while executing doInBackground()",  
                        e.getCause());  
            } catch (CancellationException e) {  
                postResultIfNotInvoked(null);  
            }  
        }  
    };  
}

private void postResultIfNotInvoked(Result result) {  
    final boolean wasTaskInvoked = mTaskInvoked.get();  
    if (!wasTaskInvoked) {  
        postResult(result);  
    }  
}

private Result postResult(Result result) {  
    @SuppressWarnings("unchecked")  
    Message message = getHandler().obtainMessage(MESSAGE\_POST\_RESULT,  
            new AsyncTaskResult<Result>(this, result));  
    message.sendToTarget();  
    return result;  
}

/\*\*  
 \* Returns the current status of this task.  
 \*  
 \* @return The current status.  
 \*/  
public final Status getStatus() {  
    return mStatus;  
}

/\*\*  
 \* Override this method to perform a computation on a background thread. The  
 \* specified parameters are the parameters passed to {@link #execute}  
 \* by the caller of this task.  
 \*  
 \* This method can call {@link #publishProgress} to publish updates  
 \* on the UI thread.  
 \*  
 \* @param params The parameters of the task.  
 \*  
 \* @return A result, defined by the subclass of this task.  
 \*  
 \* @see #onPreExecute()  
 \* @see #onPostExecute  
 \* @see #publishProgress  
 \*/  
@WorkerThread  
protected abstract Result doInBackground(Params... params);

/\*\*  
 \* Runs on the UI thread before {@link #doInBackground}.  
 \*  
 \* @see #onPostExecute  
 \* @see #doInBackground  
 \*/  
@MainThread  
protected void onPreExecute() {  
}

/\*\*  
 \* <p>Runs on the UI thread after {@link #doInBackground}. The  
 \* specified result is the value returned by {@link #doInBackground}.</p>  
 \*  
 \* <p>This method won't be invoked if the task was cancelled.</p>  
 \*  
 \* @param result The result of the operation computed by {@link #doInBackground}.  
 \*  
 \* @see #onPreExecute  
 \* @see #doInBackground  
 \* @see #onCancelled(Object)  
 \*/  
@SuppressWarnings({"UnusedDeclaration"})  
@MainThread  
protected void onPostExecute(Result result) {  
}

/\*\*  
 \* Runs on the UI thread after {@link #publishProgress} is invoked.  
 \* The specified values are the values passed to {@link #publishProgress}.  
 \*  
 \* @param values The values indicating progress.  
 \*  
 \* @see #publishProgress  
 \* @see #doInBackground  
 \*/  
@SuppressWarnings({"UnusedDeclaration"})  
@MainThread  
protected void onProgressUpdate(Progress... values) {  
}

/\*\*  
 \* <p>Runs on the UI thread after {@link #cancel(boolean)} is invoked and  
 \* {@link #doInBackground(Object\[\])} has finished.</p>  
 \*  
 \* <p>The default implementation simply invokes {@link #onCancelled()} and  
 \* ignores the result. If you write your own implementation, do not call  
 \* super.onCancelled(result).</p>  
 \*  
 \* @param result The result, if any, computed in  
 \*               {@link #doInBackground(Object\[\])}, can be null  
 \*  
 \* @see #cancel(boolean)  
 \* @see #isCancelled()  
 \*/  
@SuppressWarnings({"UnusedParameters"})  
@MainThread  
protected void onCancelled(Result result) {  
    onCancelled();  
}    

/\*\*  
 \* <p>Applications should preferably override {@link #onCancelled(Object)}.  
 \* This method is invoked by the default implementation of  
 \* {@link #onCancelled(Object)}.</p>  
 \*  
 \* <p>Runs on the UI thread after {@link #cancel(boolean)} is invoked and  
 \* {@link #doInBackground(Object\[\])} has finished.</p>  
 \*  
 \* @see #onCancelled(Object)  
 \* @see #cancel(boolean)  
 \* @see #isCancelled()  
 \*/  
@MainThread  
protected void onCancelled() {  
}

/\*\*  
 \* Returns <tt>true</tt> if this task was cancelled before it completed  
 \* normally. If you are calling {@link #cancel(boolean)} on the task,  
 \* the value returned by this method should be checked periodically from  
 \* {@link #doInBackground(Object\[\])} to end the task as soon as possible.  
 \*  
 \* @return <tt>true</tt> if task was cancelled before it completed  
 \*  
 \* @see #cancel(boolean)  
 \*/  
public final boolean isCancelled() {  
    return mCancelled.get();  
}

/\*\*  
 \* <p>Attempts to cancel execution of this task.  This attempt will  
 \* fail if the task has already completed, already been cancelled,  
 \* or could not be cancelled for some other reason. If successful,  
 \* and this task has not started when <tt>cancel</tt> is called,  
 \* this task should never run. If the task has already started,  
 \* then the <tt>mayInterruptIfRunning</tt> parameter determines  
 \* whether the thread executing this task should be interrupted in  
 \* an attempt to stop the task.</p>  
 \*  
 \* <p>Calling this method will result in {@link #onCancelled(Object)} being  
 \* invoked on the UI thread after {@link #doInBackground(Object\[\])}  
 \* returns. Calling this method guarantees that {@link #onPostExecute(Object)}  
 \* is never invoked. After invoking this method, you should check the  
 \* value returned by {@link #isCancelled()} periodically from  
 \* {@link #doInBackground(Object\[\])} to finish the task as early as  
 \* possible.</p>  
 \*  
 \* @param mayInterruptIfRunning <tt>true</tt> if the thread executing this  
 \*        task should be interrupted; otherwise, in-progress tasks are allowed  
 \*        to complete.  
 \*  
 \* @return <tt>false</tt> if the task could not be cancelled,  
 \*         typically because it has already completed normally;  
 \*         <tt>true</tt> otherwise  
 \*  
 \* @see #isCancelled()  
 \* @see #onCancelled(Object)  
 \*/  
public final boolean cancel(boolean mayInterruptIfRunning) {  
    mCancelled.set(true);  
    return mFuture.cancel(mayInterruptIfRunning);  
}

/\*\*  
 \* Waits if necessary for the computation to complete, and then  
 \* retrieves its result.  
 \*  
 \* @return The computed result.  
 \*  
 \* @throws CancellationException If the computation was cancelled.  
 \* @throws ExecutionException If the computation threw an exception.  
 \* @throws InterruptedException If the current thread was interrupted  
 \*         while waiting.  
 \*/  
public final Result get() throws InterruptedException, ExecutionException {  
    return mFuture.get();  
}

/\*\*  
 \* Waits if necessary for at most the given time for the computation  
 \* to complete, and then retrieves its result.  
 \*  
 \* @param timeout Time to wait before cancelling the operation.  
 \* @param unit The time unit for the timeout.  
 \*  
 \* @return The computed result.  
 \*  
 \* @throws CancellationException If the computation was cancelled.  
 \* @throws ExecutionException If the computation threw an exception.  
 \* @throws InterruptedException If the current thread was interrupted  
 \*         while waiting.  
 \* @throws TimeoutException If the wait timed out.  
 \*/  
public final Result get(long timeout, TimeUnit unit) throws InterruptedException,  
        ExecutionException, TimeoutException {  
    return mFuture.get(timeout, unit);  
}

/\*\*  
 \* Executes the task with the specified parameters. The task returns  
 \* itself (this) so that the caller can keep a reference to it.  
 \*  
 \* <p>Note: this function schedules the task on a queue for a single background  
 \* thread or pool of threads depending on the platform version.  When first  
 \* introduced, AsyncTasks were executed serially on a single background thread.  
 \* Starting with {@link android.os.Build.VERSION\_CODES#DONUT}, this was changed  
 \* to a pool of threads allowing multiple tasks to operate in parallel. Starting  
 \* {@link android.os.Build.VERSION\_CODES#HONEYCOMB}, tasks are back to being  
 \* executed on a single thread to avoid common application errors caused  
 \* by parallel execution.  If you truly want parallel execution, you can use  
 \* the {@link #executeOnExecutor} version of this method  
 \* with {@link #THREAD\_POOL\_EXECUTOR}; however, see commentary there for warnings  
 \* on its use.  
 \*  
 \* <p>This method must be invoked on the UI thread.  
 \*  
 \* @param params The parameters of the task.  
 \*  
 \* @return This instance of AsyncTask.  
 \*  
 \* @throws IllegalStateException If {@link #getStatus()} returns either  
 \*         {@link AsyncTask.Status#RUNNING} or {@link AsyncTask.Status#FINISHED}.  
 \*  
 \* @see #executeOnExecutor(java.util.concurrent.Executor, Object\[\])  
 \* @see #execute(Runnable)  
 \*/  
@MainThread  
public final AsyncTask<Params, Progress, Result> execute(Params... params) {  
    return executeOnExecutor(sDefaultExecutor, params);  
}

/\*\*  
 \* Executes the task with the specified parameters. The task returns  
 \* itself (this) so that the caller can keep a reference to it.  
 \*  
 \* <p>This method is typically used with {@link #THREAD\_POOL\_EXECUTOR} to  
 \* allow multiple tasks to run in parallel on a pool of threads managed by  
 \* AsyncTask, however you can also use your own {@link Executor} for custom  
 \* behavior.  
 \*  
 \* <p><em>Warning:</em> Allowing multiple tasks to run in parallel from  
 \* a thread pool is generally <em>not</em> what one wants, because the order  
 \* of their operation is not defined.  For example, if these tasks are used  
 \* to modify any state in common (such as writing a file due to a button click),  
 \* there are no guarantees on the order of the modifications.  
 \* Without careful work it is possible in rare cases for the newer version  
 \* of the data to be over-written by an older one, leading to obscure data  
 \* loss and stability issues.  Such changes are best  
 \* executed in serial; to guarantee such work is serialized regardless of  
 \* platform version you can use this function with {@link #SERIAL\_EXECUTOR}.  
 \*  
 \* <p>This method must be invoked on the UI thread.  
 \*  
 \* @param exec The executor to use.  {@link #THREAD\_POOL\_EXECUTOR} is available as a  
 \*              convenient process-wide thread pool for tasks that are loosely coupled.  
 \* @param params The parameters of the task.  
 \*  
 \* @return This instance of AsyncTask.  
 \*  
 \* @throws IllegalStateException If {@link #getStatus()} returns either  
 \*         {@link AsyncTask.Status#RUNNING} or {@link AsyncTask.Status#FINISHED}.  
 \*  
 \* @see #execute(Object\[\])  
 \*/  
@MainThread  
public final AsyncTask<Params, Progress, Result> executeOnExecutor(Executor exec,  
        Params... params) {  
    if (mStatus != Status.PENDING) {  
        switch (mStatus) {  
            case RUNNING:  
                throw new IllegalStateException("Cannot execute task:"  
                        + " the task is already running.");  
            case FINISHED:  
                throw new IllegalStateException("Cannot execute task:"  
                        + " the task has already been executed "  
                        + "(a task can be executed only once)");  
        }  
    }

    mStatus = Status.RUNNING;

    onPreExecute();

    mWorker.mParams = params;  
    exec.execute(mFuture);

    return this;  
}

/\*\*  
 \* Convenience version of {@link #execute(Object...)} for use with  
 \* a simple Runnable object. See {@link #execute(Object\[\])} for more  
 \* information on the order of execution.  
 \*  
 \* @see #execute(Object\[\])  
 \* @see #executeOnExecutor(java.util.concurrent.Executor, Object\[\])  
 \*/  
@MainThread  
public static void execute(Runnable runnable) {  
    sDefaultExecutor.execute(runnable);  
}

/\*\*  
 \* This method can be invoked from {@link #doInBackground} to  
 \* publish updates on the UI thread while the background computation is  
 \* still running. Each call to this method will trigger the execution of  
 \* {@link #onProgressUpdate} on the UI thread.  
 \*  
 \* {@link #onProgressUpdate} will not be called if the task has been  
 \* canceled.  
 \*  
 \* @param values The progress values to update the UI with.  
 \*  
 \* @see #onProgressUpdate  
 \* @see #doInBackground  
 \*/  
@WorkerThread  
protected final void publishProgress(Progress... values) {  
    if (!isCancelled()) {  
        getHandler().obtainMessage(MESSAGE\_POST\_PROGRESS,  
                new AsyncTaskResult<Progress>(this, values)).sendToTarget();  
    }  
}

private void finish(Result result) {  
    if (isCancelled()) {  
        onCancelled(result);  
    } else {  
        onPostExecute(result);  
    }  
    mStatus = Status.FINISHED;  
}

private static class InternalHandler extends Handler {  
    public InternalHandler() {  
        super(Looper.getMainLooper());  
    }

    @SuppressWarnings({"unchecked", "RawUseOfParameterizedType"})  
    @Override  
    public void handleMessage(Message msg) {  
        AsyncTaskResult<?> result = (AsyncTaskResult<?>) msg.obj;  
        switch (msg.what) {  
            case MESSAGE\_POST\_RESULT:  
                // There is only one result  
                result.mTask.finish(result.mData\[0\]);  
                break;  
            case MESSAGE\_POST\_PROGRESS:  
                result.mTask.onProgressUpdate(result.mData);  
                break;  
        }  
    }  
}

private static abstract class WorkerRunnable<Params, Result> implements Callable<Result> {  
    Params\[\] mParams;  
}

@SuppressWarnings({"RawUseOfParameterizedType"})  
private static class AsyncTaskResult<Data> {  
    final AsyncTask mTask;  
    final Data\[\] mData;

    AsyncTaskResult(AsyncTask task, Data... data) {  
        mTask = task;  
        mData = data;  
    }  
}  

}