在安全性要求比较高的系统中都会涉及到数据的加密、解密。.NET为我们封装了常用的加密算法,例如:MD5,DES,RSA等。有可逆加密,也有非可逆加密;有对称加密,也有非对称加密。加密、解密一般会用在软件的注册码,系统密码,通讯中。今天我就来分享,汇总一下C#.NET加密、解密的实现方法。
一、不可逆加密
不可逆加密一般不会涉及到解密。也就是是加密之后的密文不能还原成原来的明文。这种算法一般用于生成自信摘要,确保数据的完整性及防篡改。
使用FormsAuthentication类加密
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
using
System.Web.Security;
namespace
EncyptDemo
{
public
class
WebEncryptor
{
/// <summary>
/// SHA1加密字符串
/// </summary>
/// <param name="source">源字符串</param>
/// <returns>加密后的字符串</returns>
public
string
SHA1(``string
source)
{
return
FormsAuthentication.HashPasswordForStoringInConfigFile(source,
"SHA1"``);
}
/// <summary>
/// MD5加密字符串
/// </summary>
/// <param name="source">源字符串</param>
/// <returns>加密后的字符串</returns>
public
string
MD5(``string
source)
{
return
FormsAuthentication.HashPasswordForStoringInConfigFile(source,
"MD5"``); ;
}
}
}
使用MD5CryptoServiceProvider类生成MD5字符串
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
using
System;
using
System.Security.Cryptography;
using
System.Text;
namespace
EncyptDemo
{
public
class
MD5Helper
{
public
string
GetMD5_32(``string
s,
string
_input_charset =
"utf8"``)
{
MD5 md5 =
new
MD5CryptoServiceProvider();
byte``[] t = md5.ComputeHash(Encoding.GetEncoding(_input_charset).GetBytes(s));
StringBuilder sb =
new
StringBuilder(32);
for
(``int
i = 0; i < t.Length; i++)
{
sb.Append(t[i].ToString(``"x"``).PadLeft(2,
'0'``));
}
return
sb.ToString();
}
//16位加密
public
static
string
GetMd5_16(``string
s)
{
MD5CryptoServiceProvider md5 =
new
MD5CryptoServiceProvider();
string
t2 = BitConverter.ToString(md5.ComputeHash(UTF8Encoding.Default.GetBytes(s)), 4, 8);
t2 = t2.Replace(``"-"``,
""``);
return
t2;
}
}
}
二、可逆加密、解密
可逆加密,这种算法加密之后的密码文可以解密成原来的明文。比如通讯的时候,数据的发送方和接收方约定好加密和解密的key,发送放把原始数据加密之后开始发送,接收放收到数据之后开始解密,把密文原来成明文。
可逆加密又分为对称加密和非对称加密。所谓对称加密就是加密和解密的算法一样,也就是用来加密的key和解密的key是完全一样的。而非对称加密加密的key和解密的key是不一样的,加密是用公钥,解密是用私钥。
2.1、对称加密
对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。
在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量成几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。在计算机专网系统中广泛使用的对称加密算法有DES、IDEA和AES。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
using
System;
using
System.IO;
using
System.Security.Cryptography;
using
System.Text;
namespace
EncyptDemo
{
public
class
SymmetryEncrypt
{
private
SymmetricAlgorithm mobjCryptoService;
private
string
Key;
/// <summary>
/// 对称加密类的构造函数
/// </summary>
public
SymmetryEncrypt()
{
mobjCryptoService =
new
RijndaelManaged();
Key =
"Guz(%&hj7x89H$yuBI0456FtmaT5&fvHUFCy76*h%(HilJ$lhj!y6&(*jkP87jH7"``;
}
/// <summary>
/// 获得密钥
/// </summary>
/// <returns>密钥</returns>
private
byte``[] GetLegalKey()
{
string
sTemp = Key;
mobjCryptoService.GenerateKey();
byte``[] bytTemp = mobjCryptoService.Key;
int
KeyLength = bytTemp.Length;
if
(sTemp.Length > KeyLength)
sTemp = sTemp.Substring(0, KeyLength);
else
if
(sTemp.Length < KeyLength)
sTemp = sTemp.PadRight(KeyLength,
' '``);
return
ASCIIEncoding.ASCII.GetBytes(sTemp);
}
/// <summary>
/// 获得初始向量IV
/// </summary>
/// <returns>初试向量IV</returns>
private
byte``[] GetLegalIV()
{
string
sTemp =
"E4ghj*Ghg7!rNIfb&95GUY86GfghUb#er57HBh(u%g6HJ($jhWk7&!hg4ui%$hjk"``;
mobjCryptoService.GenerateIV();
byte``[] bytTemp = mobjCryptoService.IV;
int
IVLength = bytTemp.Length;
if
(sTemp.Length > IVLength)
sTemp = sTemp.Substring(0, IVLength);
else
if
(sTemp.Length < IVLength)
sTemp = sTemp.PadRight(IVLength,
' '``);
return
ASCIIEncoding.ASCII.GetBytes(sTemp);
}
/// <summary>
/// 加密方法
/// </summary>
/// <param name="Source">待加密的串</param>
/// <returns>经过加密的串</returns>
public
string
Encrypto(``string
Source)
{
byte``[] bytIn = UTF8Encoding.UTF8.GetBytes(Source);
MemoryStream ms =
new
MemoryStream();
mobjCryptoService.Key = GetLegalKey();
mobjCryptoService.IV = GetLegalIV();
ICryptoTransform encrypto = mobjCryptoService.CreateEncryptor();
CryptoStream cs =
new
CryptoStream(ms, encrypto, CryptoStreamMode.Write);
cs.Write(bytIn, 0, bytIn.Length);
cs.FlushFinalBlock();
ms.Close();
byte``[] bytOut = ms.ToArray();
return
Convert.ToBase64String(bytOut);
}
/// <summary>
/// 解密方法
/// </summary>
/// <param name="Source">待解密的串</param>
/// <returns>经过解密的串</returns>
public
string
Decrypto(``string
Source)
{
byte``[] bytIn = Convert.FromBase64String(Source);
MemoryStream ms =
new
MemoryStream(bytIn, 0, bytIn.Length);
mobjCryptoService.Key = GetLegalKey();
mobjCryptoService.IV = GetLegalIV();
ICryptoTransform encrypto = mobjCryptoService.CreateDecryptor();
CryptoStream cs =
new
CryptoStream(ms, encrypto, CryptoStreamMode.Read);
StreamReader sr =
new
StreamReader(cs);
return
sr.ReadToEnd();
}
}
}
在对称加密算法中比较著名和常用的就是大名鼎鼎的DES加密算法,它安全性比较高的一种算法,目前只有一种方法可以破解该算法,那就是穷举法。下面我们来看看.NET中要使用DES加密怎么实现?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
using
System;
using
System.IO;
using
System.Security.Cryptography;
using
System.Text;
namespace
EncyptDemo
{
public
class
DESHeper
{
//默认密钥向量
private
static
byte``[] Keys = { 0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF };
/// <summary>
/// DES加密字符串
/// </summary>
/// <param name="encryptString">待加密的字符串</param>
/// <param name="encryptKey">加密密钥,要求为8位</param>
/// <returns>加密成功返回加密后的字符串,失败返回源串</returns>
public
static
string
EncryptDES(``string
encryptString,
string
encryptKey)
{
try
{
byte``[] rgbKey = Encoding.UTF8.GetBytes(encryptKey.Substring(0, 8));
byte``[] rgbIV = Keys;
byte``[] inputByteArray = Encoding.UTF8.GetBytes(encryptString);
DESCryptoServiceProvider dCSP =
new
DESCryptoServiceProvider();
MemoryStream mStream =
new
MemoryStream();
CryptoStream cStream =
new
CryptoStream(mStream, dCSP.CreateEncryptor(rgbKey, rgbIV), CryptoStreamMode.Write);
cStream.Write(inputByteArray, 0, inputByteArray.Length);
cStream.FlushFinalBlock();
return
Convert.ToBase64String(mStream.ToArray());
}
catch
{
return
encryptString;
}
}
/// <summary>
/// DES解密字符串
/// </summary>
/// <param name="decryptString">待解密的字符串</param>
/// <param name="decryptKey">解密密钥,要求为8位,和加密密钥相同</param>
/// <returns>解密成功返回解密后的字符串,失败返源串</returns>
public
static
string
DecryptDES(``string
decryptString,
string
decryptKey)
{
try
{
byte``[] rgbKey = Encoding.UTF8.GetBytes(decryptKey);
byte``[] rgbIV = Keys;
byte``[] inputByteArray = Convert.FromBase64String(decryptString);
DESCryptoServiceProvider DCSP =
new
DESCryptoServiceProvider();
MemoryStream mStream =
new
MemoryStream();
CryptoStream cStream =
new
CryptoStream(mStream, DCSP.CreateDecryptor(rgbKey, rgbIV), CryptoStreamMode.Write);
cStream.Write(inputByteArray, 0, inputByteArray.Length);
cStream.FlushFinalBlock();
return
Encoding.UTF8.GetString(mStream.ToArray());
}
catch
{
return
decryptString;
}
}
/// <summary>
/// DES加密方法
/// </summary>
/// <param name="strPlain">明文</param>
/// <param name="strDESKey">密钥</param>
/// <param name="strDESIV">向量</param>
/// <returns>密文</returns>
public
string
DESEncrypt(``string
strPlain,
string
strDESKey,
string
strDESIV)
{
//把密钥转换成字节数组
byte``[] bytesDESKey = ASCIIEncoding.ASCII.GetBytes(strDESKey);
//把向量转换成字节数组
byte``[] bytesDESIV = ASCIIEncoding.ASCII.GetBytes(strDESIV);
//声明1个新的DES对象
DESCryptoServiceProvider desEncrypt =
new
DESCryptoServiceProvider();
//开辟一块内存流
MemoryStream msEncrypt =
new
MemoryStream();
//把内存流对象包装成加密流对象
CryptoStream csEncrypt =
new
CryptoStream(msEncrypt, desEncrypt.CreateEncryptor(bytesDESKey, bytesDESIV), CryptoStreamMode.Write);
//把加密流对象包装成写入流对象
StreamWriter swEncrypt =
new
StreamWriter(csEncrypt);
//写入流对象写入明文
swEncrypt.WriteLine(strPlain);
//写入流关闭
swEncrypt.Close();
//加密流关闭
csEncrypt.Close();
//把内存流转换成字节数组,内存流现在已经是密文了
byte``[] bytesCipher = msEncrypt.ToArray();
//内存流关闭
msEncrypt.Close();
//把密文字节数组转换为字符串,并返回
return
UnicodeEncoding.Unicode.GetString(bytesCipher);
}
/// <summary>
/// DES解密方法
/// </summary>
/// <param name="strCipher">密文</param>
/// <param name="strDESKey">密钥</param>
/// <param name="strDESIV">向量</param>
/// <returns>明文</returns>
public
string
DESDecrypt(``string
strCipher,
string
strDESKey,
string
strDESIV)
{
//把密钥转换成字节数组
byte``[] bytesDESKey = ASCIIEncoding.ASCII.GetBytes(strDESKey);
//把向量转换成字节数组
byte``[] bytesDESIV = ASCIIEncoding.ASCII.GetBytes(strDESIV);
//把密文转换成字节数组
byte``[] bytesCipher = UnicodeEncoding.Unicode.GetBytes(strCipher);
//声明1个新的DES对象
DESCryptoServiceProvider desDecrypt =
new
DESCryptoServiceProvider();
//开辟一块内存流,并存放密文字节数组
MemoryStream msDecrypt =
new
MemoryStream(bytesCipher);
//把内存流对象包装成解密流对象
CryptoStream csDecrypt =
new
CryptoStream(msDecrypt, desDecrypt.CreateDecryptor(bytesDESKey, bytesDESIV), CryptoStreamMode.Read);
//把解密流对象包装成读出流对象
StreamReader srDecrypt =
new
StreamReader(csDecrypt);
//明文=读出流的读出内容
string
strPlainText = srDecrypt.ReadLine();
//读出流关闭
srDecrypt.Close();
//解密流关闭
csDecrypt.Close();
//内存流关闭
msDecrypt.Close();
//返回明文
return
strPlainText;
}
}
}
除此之外我们还可以用DES加密文件:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
using
System;
using
System.IO;
using
System.Security.Cryptography;
namespace
EncyptDemo
{
public
class
FileEncrypt
{
private
static
void
EncryptData(String pathInput, String pathOutput,
byte``[] desKey,
byte``[] desIV)
{
//Create the file streams to handle the input and output files.
FileStream fin =
new
FileStream(pathInput, FileMode.Open, FileAccess.Read);
FileStream fout =
new
FileStream(pathOutput, FileMode.OpenOrCreate, FileAccess.Write);
fout.SetLength(0);
//Create variables to help with read and write.
byte``[] bin =
new
byte``[100];
//This is intermediate storage for the encryption.
long
rdlen = 0;
//This is the total number of bytes written.
long
totlen = fin.Length;
//This is the total length of the input file.
int
len;
//This is the number of bytes to be written at a time.
DES des =
new
DESCryptoServiceProvider();
CryptoStream encStream =
new
CryptoStream(fout, des.CreateEncryptor(desKey, desIV), CryptoStreamMode.Write);
//Read from the input file, then encrypt and write to the output file.
while
(rdlen < totlen)
{
len = fin.Read(bin, 0, 100);
encStream.Write(bin, 0, len);
rdlen = rdlen + len;
}
encStream.Close();
fout.Close();
fin.Close();
}
//解密文件
private
static
void
DecryptData(String pathInput, String pathOutput,
byte``[] desKey,
byte``[] desIV)
{
//Create the file streams to handle the input and output files.
FileStream fin =
new
FileStream(pathInput, FileMode.Open, FileAccess.Read);
FileStream fout =
new
FileStream(pathOutput, FileMode.OpenOrCreate, FileAccess.Write);
fout.SetLength(0);
//Create variables to help with read and write.
byte``[] bin =
new
byte``[100];
//This is intermediate storage for the encryption.
long
rdlen = 0;
//This is the total number of bytes written.
long
totlen = fin.Length;
//This is the total length of the input file.
int
len;
//This is the number of bytes to be written at a time.
DES des =
new
DESCryptoServiceProvider();
CryptoStream encStream =
new
CryptoStream(fout, des.CreateDecryptor(desKey, desIV), CryptoStreamMode.Write);
//Read from the input file, then encrypt and write to the output file.
while
(rdlen < totlen)
{
len = fin.Read(bin, 0, 100);
encStream.Write(bin, 0, len);
rdlen = rdlen + len;
}
encStream.Close();
fout.Close();
fin.Close();
}
}
}
2.2、非对称加密
不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信方必须首先知道收信方的公钥,然后利用收信方的公钥来加密原文;收信方收到加密密文后,使用自己的私钥才能解密密文。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。
广泛应用的不对称加密算法有RSA算法和美国国家标准局提出的DSA。以不对称加密算法为基础的加密技术应用非常广泛。尤其是在Linux系统下会经常用到这种非对称加密。反正你只需要记住一点有公钥和私钥对的就是非对称加密。
下面我们来看看C#中的怎么实现RSA非对称加密。
首先,我们要生成一个公钥和私钥对。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
using
System.IO;
using
System.Security.Cryptography;
namespace
ConsoleApplication1
{
class
Program
{
static
void
Main(``string``[] args)
{
RSACryptoServiceProvider rsa =
new
RSACryptoServiceProvider();
using
(StreamWriter writer =
new
StreamWriter(``"PrivateKey.xml"``,``false``))
//这个文件要保密...
{
writer.WriteLine(rsa.ToXmlString(``true``));
}
using
(StreamWriter writer =
new
StreamWriter(``"PublicKey.xml"``,``false``))
{
writer.WriteLine(rsa.ToXmlString(``false``));
}
}
}
}
运行上面的控制台程序会在程序目录下生成配对的公钥和私钥文件。
接下来写一个RSA加密解密类
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
using
System;
using
System.Collections.Generic;
using
System.linq;
using
System.Text;
using
System.Security.Cryptography;
namespace
ClassLibrary1
{
public
class
RSAHelper
{
static
string
PublicKey =
@"<RSAKeyValue><Modulus>nwbjN1znmyL2KyOIrRy/PbWZpTi+oekJIoGNc6jHCl0JNZLFHNs70fyf7y44BH8L8MBkSm5sSwCZfLm5nAsDNOmuEV5Uab5DuWYSE4R2Z3NkKexJJ4bnmXEZYXPMzTbXIpyvU2y9YVrz1BjjRPeHsb6daVdrBgjs4+2b/ok9myM=</Modulus><Exponent>AQAB</Exponent></RSAKeyValue>"``;
static
string
PrivateKey =
@"<RSAKeyValue><Modulus>nwbjN1znmyL2KyOIrRy/PbWZpTi+oekJIoGNc6jHCl0JNZLFHNs70fyf7y44BH8L8MBkSm5sSwCZfLm5nAsDNOmuEV5Uab5DuWYSE4R2Z3NkKexJJ4bnmXEZYXPMzTbXIpyvU2y9YVrz1BjjRPeHsb6daVdrBgjs4+2b/ok9myM=</Modulus><Exponent>AQAB</Exponent><P>2PfagXD2zKzUGLkAXpC+04u0xvESpO1PbTUOGA2m8auviEMNz8VempJ/reOlJjEO2q2nrUsbtqKd0m96Cxz0Fw==</P><Q>u6Kiit1XhIgRD9jQnQh36y28LOmku2Gqn9KownMSVGhWzkkHQPw77A2h1OirQiKe6aOIO/yxdwTI/9Ds4Kwc1Q==</Q><DP>GfwtPj1yQXcde8yEX88EG7/qqbzrl7cYQSMOihDwgpcmUbJ+L/kaaHbNNd1CxT0w4z3TDC0np4r4TeCuBDC2hw==</DP><DQ>hl8I0jOC2klrFpMpilunLUeaa/uCWiKuQzhkXKR1qvbxu1b3F+XKr9hvXX6mLn2GmkDfbj4fhOFrZC/lg1weZQ==</DQ><InverseQ>P1y+6el2+1LsdwL14hYCILvsTKGokGSKD35N7HakLmHNjXiU05hN1cnXMsGIZGg+pNHmz/yuPmgNLJoNZCQiCg==</InverseQ><D>D27DriO99jg2W4lfQi2AAaUV/Aq9tUjAMjEQYSEH7+GHe0N7DYnZDE/P1Y5OsWEC76I8GV0N9Vlhi9EaSiJndRvUgphTL2YuAjrVr59Il+lwh/LUBN46AX3cmQm3cFf1F1FXKj4S+QCx/qrCH4mmKpynuQsPL/1XiQSWpugI30E=</D></RSAKeyValue>"``;
static
RSACryptoServiceProvider rsaProvider =
new
RSACryptoServiceProvider(1024);
public
static
byte``[] EncryptData(``byte``[] data)
{
RSACryptoServiceProvider rsa =
new
RSACryptoServiceProvider(1024);
//将公钥导入到RSA对象中,准备加密;
rsa.FromXmlString(PublicKey);
//对数据data进行加密,并返回加密结果;
//第二个参数用来选择Padding的格式
byte``[] buffer = rsa.Encrypt(data,
false``);
return
buffer;
}
public
static
byte``[] DecryptData(``byte``[] data)
{
RSACryptoServiceProvider rsa =
new
RSACryptoServiceProvider(1024);
//将私钥导入RSA中,准备解密;
rsa.FromXmlString(PrivateKey);
//对数据进行解密,并返回解密结果;
return
rsa.Decrypt(data,
false``);
}
}
}
上面的PublicKey和PrivateKey非别是文件PublicKey.xml和PrivateKey.xml里面的内容。测试这个RSAHelper的方法:
1
2
3
4
5
6
7
8
9
10
[TestMethod()]
public
void
DecryptDataTest()
{
byte``[] data = System.Text.ASCIIEncoding.ASCII.GetBytes(``"Hello"``);
byte``[] data2 = RSAHelper.EncryptData(data);
byte``[] actual;
actual = RSAHelper.DecryptData(data2);
var
a = System.Text.ASCIIEncoding.ASCII.GetString(actual);
Assert.AreEqual(``"Hello"``, a);
}
可以看到上面通过EncryptData加密的数据能够通过DecryptData解密成原来的明文(Hello),而这个加密和解密用是不同的密钥。
手机扫一扫
移动阅读更方便
你可能感兴趣的文章