【STM32】使用SDIO进行SD卡读写,包含文件管理FatFs(一)-初步认识SD卡
【STM32】使用SDIO进行SD卡读写,包含文件管理FatFs(二)-了解SD总线,命令的相关介绍
【STM32】使用SDIO进行SD卡读写,包含文件管理FatFs(三)-SD卡的操作流程
【STM32】使用SDIO进行SD卡读写,包含文件管理FatFs(四)-介绍库函数,获取一些SD卡的信息
【STM32】使用SDIO进行SD卡读写,包含文件管理FatFs(五)-文件管理初步介绍
【STM32】使用SDIO进行SD卡读写,包含文件管理FatFs(六)-FatFs使用的思路介绍
【STM32】使用SDIO进行SD卡读写,包含文件管理FatFs(七)-准备移植FatFs
【STM32】使用SDIO进行SD卡读写,包含文件管理FatFs(八)-认识内存管理
【STM32】使用SDIO进行SD卡读写,包含文件管理FatFs(终)-配合内存管理来遍历SD卡
FatFs官方网站:http://elm-chan.org/fsw/ff/00index_e.html
注意一点,在使用文件管理之前,你应该要保证和你连接的设备,所有你用到的功能都是调通了的
例如
1.你的设备是SD卡,或是Flash之类的
2.功能实现的部分,例如一些《初始化》、《读功能》,或是《写功能》
这些东西都实现了,才来添加FatFs文件管理
因为在《diskio.c》里,需要执行你已经封装好的函数,也就是上两行说的《初始化》《读功能》《写功能》之类的
如果还没调通,就来移植,只怕问题会更多
那如果一切都准备好了,下面就来移植FatFs吧
在我的范例教程里,用的是《ff11a》
我知道目前(2020.12.14)最新版本是《ff14a》,并且和《ff11a》有些出入
但只要懂《ff11a》的思路,往后的版本也能驾轻就熟
《2021.02.02修改:我改用10b版本了,正点和野火也是用这个版本,我是用11a后发现有问题,才改的,我不知道在哪看的,以为他们都是用11a版本》
《但是添加过程都差不多,下面的文字和图片有出入,我就懒得改了。。。抱歉》
在官网的历史版本里面可以下载【Download:Previous Releases】,找到R0.11a下载 找到R0.10b下载
此压缩档里面有两个文件
等等在开Keil,先去自己的项目路径下,新建一个FatFs文件夹(文件分类后,比较方便阅读)
把压缩档里面的src复制到刚建的FatFs文件夹
doc就不用复制了
此时,打开Keil,在project下,新建一个FATFS文件夹,并且添加2个源文件《diskio.c》《ff.c》
再把头文件路径也填上,编译后,让头文件显示出来,有错误没关系,因为我们之后就会修改
首先来看《ffconf.h》,通过这些宏定义,可以设定你不需要什么功能,毕竟这样可以节省空间
另外还可以设置编码(_CODE_PAGE),中文编码的文件略大一些,如果要用中文编码,还需要去option文件夹,找到cc936源文件,添加到自己项目,这里我先设置为1
还有是否要支持长文件名,是否支持格式化…等等
/*---------------------------------------------------------------------------/
/ FatFs - FAT file system module configuration file R0.11a (C)ChaN, 2015
/---------------------------------------------------------------------------*/
#define _FFCONF 64180 /* Revision ID */
/*---------------------------------------------------------------------------/
/ Function Configurations
/---------------------------------------------------------------------------*/
#define _FS_READONLY 0 // 是否只读
/* This option switches read-only configuration. (0:Read/Write or 1:Read-only)
/ Read-only configuration removes writing API functions, f_write(), f_sync(),
/ f_unlink(), f_mkdir(), f_chmod(), f_rename(), f_truncate(), f_getfree()
/ and optional writing functions as well. */
#define _FS_MINIMIZE 0 // 是否使用裁剪文件
/* This option defines minimization level to remove some basic API functions.
/
/ 0: All basic functions are enabled.
/ 1: f_stat(), f_getfree(), f_unlink(), f_mkdir(), f_chmod(), f_utime(),
/ f_truncate() and f_rename() function are removed.
/ 2: f_opendir(), f_readdir() and f_closedir() are removed in addition to 1.
/ 3: f_lseek() function is removed in addition to 2. */
#define _USE_STRFUNC 0 // 是否允许字符串操作
/* This option switches string functions, f_gets(), f_putc(), f_puts() and
/ f_printf().
/
/ 0: Disable string functions.
/ 1: Enable without LF-CRLF conversion.
/ 2: Enable with LF-CRLF conversion. */
#define _USE_FIND 0 // 切换过滤目录读取功能和相关功能
/* This option switches filtered directory read feature and related functions,
/ f_findfirst() and f_findnext(). (0:Disable or 1:Enable) */
#define _USE_MKFS 0 // 是否开启格式化功能
/* This option switches f_mkfs() function. (0:Disable or 1:Enable) */
#define _USE_FASTSEEK 0 // 是否开启快速索引
/* This option switches fast seek feature. (0:Disable or 1:Enable) */
#define _USE_LABEL 0 // 是否开启切换卷标功能
/* This option switches volume label functions, f_getlabel() and f_setlabel().
/ (0:Disable or 1:Enable) */
#define _USE_FORWARD 0 // 是否允许f_forward函数
/* This option switches f_forward() function. (0:Disable or 1:Enable)
/ To enable it, also _FS_TINY need to be set to 1. */
/*---------------------------------------------------------------------------/
/ Locale and Namespace Configurations
/---------------------------------------------------------------------------*/
// 编码【932为日文】【936为简体中文】【949为韩文】【950为繁体中文】
#define _CODE_PAGE 1
/* This option specifies the OEM code page to be used on the target system.
/ Incorrect setting of the code page can cause a file open failure.
/
/ 1 - ASCII (No extended character. Non-LFN cfg. only)
/ 437 - U.S.
/ 720 - Arabic
/ 737 - Greek
/ 771 - KBL
/ 775 - Baltic
/ 850 - Latin 1
/ 852 - Latin 2
/ 855 - Cyrillic
/ 857 - Turkish
/ 860 - Portuguese
/ 861 - Icelandic
/ 862 - Hebrew
/ 863 - Canadian French
/ 864 - Arabic
/ 865 - Nordic
/ 866 - Russian
/ 869 - Greek 2
/ 932 - Japanese (DBCS)
/ 936 - Simplified Chinese (DBCS)
/ 949 - Korean (DBCS)
/ 950 - Traditional Chinese (DBCS)
*/
#define _USE_LFN 0 // 是否支持长文件名
#define _MAX_LFN 255
/* The _USE_LFN option switches the LFN feature.
/
/ 0: Disable LFN feature. _MAX_LFN has no effect.
/ 1: Enable LFN with static working buffer on the BSS. Always NOT thread-safe.
/ 2: Enable LFN with dynamic working buffer on the STACK.
/ 3: Enable LFN with dynamic working buffer on the HEAP.
/
/ When enable the LFN feature, Unicode handling functions (option/unicode.c) must
/ be added to the project. The LFN working buffer occupies (_MAX_LFN + 1) * 2 bytes.
/ When use stack for the working buffer, take care on stack overflow. When use heap
/ memory for the working buffer, memory management functions, ff_memalloc() and
/ ff_memfree(), must be added to the project. */
#define _LFN_UNICODE 0 // 切换字符编码
/* This option switches character encoding on the API. (0:ANSI/OEM or 1:Unicode)
/ To use Unicode string for the path name, enable LFN feature and set _LFN_UNICODE
/ to 1. This option also affects behavior of string I/O functions. */
#define _STRF_ENCODE 3 // 编码相关
/* When _LFN_UNICODE is 1, this option selects the character encoding on the file to
/ be read/written via string I/O functions, f_gets(), f_putc(), f_puts and f_printf().
/
/ 0: ANSI/OEM
/ 1: UTF-16LE
/ 2: UTF-16BE
/ 3: UTF-8
/
/ When _LFN_UNICODE is 0, this option has no effect. */
#define _FS_RPATH 0 // 是否允许相对路径
/* This option configures relative path feature.
/
/ 0: Disable relative path feature and remove related functions.
/ 1: Enable relative path feature. f_chdir() and f_chdrive() are available.
/ 2: f_getcwd() function is available in addition to 1.
/
/ Note that directory items read via f_readdir() are affected by this option. */
/*---------------------------------------------------------------------------/
/ Drive/Volume Configurations
/---------------------------------------------------------------------------*/
#define _VOLUMES 1 // 磁盘逻辑卷数
/* Number of volumes (logical drives) to be used. */
#define _STR_VOLUME_ID 0
#define _VOLUME_STRS "RAM","NAND","CF","SD1","SD2","USB1","USB2","USB3"
/* _STR_VOLUME_ID option switches string volume ID feature.
/ When _STR_VOLUME_ID is set to 1, also pre-defined strings can be used as drive
/ number in the path name. _VOLUME_STRS defines the drive ID strings for each
/ logical drives. Number of items must be equal to _VOLUMES. Valid characters for
/ the drive ID strings are: A-Z and 0-9. */
#define _MULTI_PARTITION 0 // 分区选项,默认为0,即一个分区,若想要多分区可自行设置
/* This option switches multi-partition feature. By default (0), each logical drive
/ number is bound to the same physical drive number and only an FAT volume found on
/ the physical drive will be mounted. When multi-partition feature is enabled (1),
/ each logical drive number is bound to arbitrary physical drive and partition
/ listed in the VolToPart[]. Also f_fdisk() funciton will be available. */
#define _MIN_SS 512 // 扇区缓冲最小值
#define _MAX_SS 512 // 扇区缓冲最大值
/* These options configure the range of sector size to be supported. (512, 1024,
/ 2048 or 4096) Always set both 512 for most systems, all type of memory cards and
/ harddisk. But a larger value may be required for on-board flash memory and some
/ type of optical media. When _MAX_SS is larger than _MIN_SS, FatFs is configured
/ to variable sector size and GET_SECTOR_SIZE command must be implemented to the
/ disk_ioctl() function. */
#define _USE_TRIM 0
/* This option switches ATA-TRIM feature. (0:Disable or 1:Enable)
/ To enable Trim feature, also CTRL_TRIM command should be implemented to the
/ disk_ioctl() function. */
#define _FS_NOFSINFO 0
/* If you need to know correct free space on the FAT32 volume, set bit 0 of this
/ option, and f_getfree() function at first time after volume mount will force
/ a full FAT scan. Bit 1 controls the use of last allocated cluster number.
/
/ bit0=0: Use free cluster count in the FSINFO if available.
/ bit0=1: Do not trust free cluster count in the FSINFO.
/ bit1=0: Use last allocated cluster number in the FSINFO if available.
/ bit1=1: Do not trust last allocated cluster number in the FSINFO.
*/
/*---------------------------------------------------------------------------/
/ System Configurations
/---------------------------------------------------------------------------*/
#define _FS_TINY 0 // 文件系统为标准的还是微型的
/* This option switches tiny buffer configuration. (0:Normal or 1:Tiny)
/ At the tiny configuration, size of the file object (FIL) is reduced _MAX_SS
/ bytes. Instead of private sector buffer eliminated from the file object,
/ common sector buffer in the file system object (FATFS) is used for the file
/ data transfer. */
#define _FS_NORTC 0
#define _NORTC_MON 1
#define _NORTC_MDAY 1
#define _NORTC_YEAR 2015
/* The _FS_NORTC option switches timestamp feature. If the system does not have
/ an RTC function or valid timestamp is not needed, set _FS_NORTC to 1 to disable
/ the timestamp feature. All objects modified by FatFs will have a fixed timestamp
/ defined by _NORTC_MON, _NORTC_MDAY and _NORTC_YEAR.
/ When timestamp feature is enabled (_FS_NORTC == 0), get_fattime() function need
/ to be added to the project to read current time form RTC. _NORTC_MON,
/ _NORTC_MDAY and _NORTC_YEAR have no effect.
/ These options have no effect at read-only configuration (_FS_READONLY == 1). */
#define _FS_LOCK 0
/* The _FS_LOCK option switches file lock feature to control duplicated file open
/ and illegal operation to open objects. This option must be 0 when _FS_READONLY
/ is 1.
/
/ 0: Disable file lock feature. To avoid volume corruption, application program
/ should avoid illegal open, remove and rename to the open objects.
/ >0: Enable file lock feature. The value defines how many files/sub-directories
/ can be opened simultaneously under file lock control. Note that the file
/ lock feature is independent of re-entrancy. */
#define _FS_REENTRANT 0
#define _FS_TIMEOUT 1000
#define _SYNC_t HANDLE
/* The _FS_REENTRANT option switches the re-entrancy (thread safe) of the FatFs
/ module itself. Note that regardless of this option, file access to different
/ volume is always re-entrant and volume control functions, f_mount(), f_mkfs()
/ and f_fdisk() function, are always not re-entrant. Only file/directory access
/ to the same volume is under control of this feature.
/
/ 0: Disable re-entrancy. _FS_TIMEOUT and _SYNC_t have no effect.
/ 1: Enable re-entrancy. Also user provided synchronization handlers,
/ ff_req_grant(), ff_rel_grant(), ff_del_syncobj() and ff_cre_syncobj()
/ function, must be added to the project. Samples are available in
/ option/syscall.c.
/
/ The _FS_TIMEOUT defines timeout period in unit of time tick.
/ The _SYNC_t defines O/S dependent sync object type. e.g. HANDLE, ID, OS_EVENT*,
/ SemaphoreHandle_t and etc.. A header file for O/S definitions needs to be
/ included somewhere in the scope of ff.c. */
#define _WORD_ACCESS 0 // 数据递进格式
/* The _WORD_ACCESS option is an only platform dependent option. It defines
/ which access method is used to the word data on the FAT volume.
/
/ 0: Byte-by-byte access. Always compatible with all platforms.
/ 1: Word access. Do not choose this unless under both the following conditions.
/
/ * Address misaligned memory access is always allowed to ALL instructions.
/ * Byte order on the memory is little-endian.
/
/ If it is the case, _WORD_ACCESS can also be set to 1 to reduce code size.
/ Following table shows allowable settings of some type of processors.
/
/ ARM7TDMI 0 *2 ColdFire 0 *1 V850E 0 *2
/ Cortex-M3 0 *3 Z80 0/1 V850ES 0/1
/ Cortex-M0 0 *2 x86 0/1 TLCS-870 0/1
/ AVR 0/1 RX600(LE) 0/1 TLCS-900 0/1
/ AVR32 0 *1 RL78 0 *2 R32C 0 *2
/ PIC18 0/1 SH-2 0 *1 M16C 0/1
/ PIC24 0 *2 H8S 0 *1 MSP430 0 *2
/ PIC32 0 *1 H8/300H 0 *1 8051 0/1
/
/ *1:Big-endian.
/ *2:Unaligned memory access is not supported.
/ *3:Some compilers generate LDM/STM for mem_cpy function.
*/
对应上面部分宏定义,我整理了一个表格,可以一目了然的认识宏定义是做什么事情
《2021.01.16修改:不用自己的表格了,官方有做出一个表格》
接着来看《diskio.c》编译的错误基本都在这了
首先是把几个头文件注释了,这几个头文件是其他范例有的,我们这里要用自己的头文件
下面的三个宏定义《ATA》《MMC》《USB》,可以改成自己想要的名称,例如我的板子上有SD、Flash,干脆就定0和1
#include "sdio_sdcard.h"
#define SD 0
#define FLASH 1
然后把函数《disk_status》《disk_initialize》《disk_read》《disk_write》里面执行的代码注释了,或者删除也可以,未来要添加自己的代码(这里先不添加,先找出所有错误)
对了,由于我上面改了宏定义,这里switch-case也要做一些修改(图片原来的ATA、MMC、USB,要修改成SD和FLASH)
DSTATUS disk_status (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
DSTATUS stat;
int result;
switch (pdrv) {
case SD :
return stat;
case FLASH :
return stat;
}
return STA\_NOINIT;
}
再次编译,发现错误
解决这个错误有两个方法,但是这两个方法,要用哪个,需要取决于你应用的设计
get_fattime是获取当前时间
如果不需要,在《ffconf.h》里面,找到宏定义《#define _FS_NORTC》,改为1,即可关闭
如果需要这个功能,需要在《diskio.c》里面,实现get_fattime函数,代码如下
DWORD get_fattime(void) {
/* 返回当前时间戳 */
return ((DWORD)(2015 - 1980) << 25) /* Year 2015 */
| ((DWORD)1 << 21) /* Month 1 */
| ((DWORD)1 << 16) /* Mday 1 */
| ((DWORD)0 << 11) /* Hour 0 */
| ((DWORD)0 << 5) /* Min 0 */
| ((DWORD)0 >> 1); /* Sec 0 */
}
我不需要这个功能,我直接设定宏定义为1,然后编译,这时错误就没有了
下面先完成 《diskio.c》代码的添加
源文件《sdio_sdcard.c》和头文件《sdio_sdcard.h》,我会放在文章的最后
里面包含SD_Init函数
另外,这函数又是在做什么事情的?我两篇博客分别提到思路以及实现
我的第三篇博客【STM32】使用SDIO进行SD卡读写,包含文件管理FatFs(三)-SD卡的操作流程,里面有提到图形化流程,也是SD_Init需要做的事情
我的第四篇博客【STM32】使用SDIO进行SD卡读写,包含文件管理FatFs(四)-介绍库函数,获取一些SD卡的信息,这篇才是真正讲到如何使用库函数,完成SD_Init初始化
但有一点需要注意!我里面提到的9个步骤(第10步骤不是初始化该做的事),我是拆分开来,一部分一部分代码来讲解的,而本篇文章末了的代码,是整合过的,就这一点不同而已
SD_Error SD_Init(void)
{
…
…
}
FatFs文件管理的宗旨,你不要自己去调用SD的初始化
由文件管理自己去调用,但你还是要给出命令的,例如接口《f_mount》
SD_Init会返回一个状态SD_Error,这个状态会通知文件管理系统,然后《f_mount》也有一个返回值,最终我们就会得知初始化的结果
DSTATUS disk_initialize (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
DSTATUS stat;
int result = 0;
switch (pdrv) {
case SD :
result = SD\_Init(); // SD卡初始化
break;
case W25Qxx :
break;
}
if(result)return STA\_NOINIT;
else return 0; //初始化成功
}
完成了设备接口的配置,我们回到自己的应用层,尝试执行《f_mount》,参数2:path,这里给的逻辑编号,是你在《diskio.c》里面的宏定义,SD我定义为0,这里就给 "0:"
最终函数会返回一个状态《FRESULT》,如果返回是0,代表正常
《2021.01.14新增的内容:f_mount就是挂起,挂起后你才可以使用一些功能,例如读取f_open,或是打开文件夹f_opendir,写入数据f_write。。。等等》
#include "stm32f4xx.h"
#include "delay.h"
// 外设
#include "sdio_sdcard.h"
#include "usart.h"
// FatFS
#include "diskio.h"
#include "ff.h"
FATFS *fs[_VOLUMES]; // FatFs文件系统对象
FRESULT res_sd; // 文件操作结果
int main(void)
{
delay_init(180);
/\* 串口初始化 \*/
uart1\_init(9600);
/\* 文件管理系统初始化 \*/
res\_sd = f\_mount(fs\[0\],"0:",1);
USART\_SendData(USART1, res\_sd); // 打印处理结果
while(1);
}
执行效果如下,记得要用HEX显示
/* File function return code (FRESULT) */
typedef enum {
FR_OK = 0, /* (0) Succeeded */
FR_DISK_ERR, /* (1) A hard error occurred in the low level disk I/O layer */
FR_INT_ERR, /* (2) Assertion failed */
FR_NOT_READY, /* (3) The physical drive cannot work */
FR_NO_FILE, /* (4) Could not find the file */
FR_NO_PATH, /* (5) Could not find the path */
FR_INVALID_NAME, /* (6) The path name format is invalid */
FR_DENIED, /* (7) Access denied due to prohibited access or directory full */
FR_EXIST, /* (8) Access denied due to prohibited access */
FR_INVALID_OBJECT, /* (9) The file/directory object is invalid */
FR_WRITE_PROTECTED, /* (10) The physical drive is write protected */
FR_INVALID_DRIVE, /* (11) The logical drive number is invalid */
FR_NOT_ENABLED, /* (12) The volume has no work area */
FR_NO_FILESYSTEM, /* (13) There is no valid FAT volume */
FR_MKFS_ABORTED, /* (14) The f_mkfs() aborted due to any parameter error */
FR_TIMEOUT, /* (15) Could not get a grant to access the volume within defined period */
FR_LOCKED, /* (16) The operation is rejected according to the file sharing policy */
FR_NOT_ENOUGH_CORE, /* (17) LFN working buffer could not be allocated */
FR_TOO_MANY_OPEN_FILES, /* (18) Number of open files > _FS_LOCK */
FR_INVALID_PARAMETER /* (19) Given parameter is invalid */
} FRESULT;
至此,移植FatFs初步算是成功了(因为执行f_mount返回的是00,代表成功)
下一篇,先来研究内存管理,因为FatFs文件管理需要使用到
等内存管理结束后,会回头处理读取SD卡的事情
《2021.01.14新增的内容:这里测试了路径,我把测试结果贴上来,共两张图,以及代码块》
《第一张图是我SD卡的内容,包含几个文件夹,和几张图片,以及文件夹的嵌套关系》
《第二张图就是测试结果了,我把结果都写在注释里面,当前代码的行数,要对照上一行的注释》
《代码块:因为涉及到读取,所以必须修改diskio.c》
DRESULT disk_read (
BYTE pdrv, /* Physical drive nmuber (0..) */
BYTE *buff, /* Data buffer to store read data */
DWORD sector, /* Sector address (LBA) */
UINT count /* Number of sectors to read (1..128) */
)
{
u8 res=0;
if (!count)return RES_PARERR;//count不能等于0,否则返回参数错误
switch(pdrv)
{
case SD://SD卡
res=SD_ReadDisk(buff,sector,count);
while(res)//读出错
{
SD_Init(); //重新初始化SD卡
res=SD_ReadDisk(buff,sector,count);
//printf("sd rd error:%d\r\n",res);
}
break;
case W25Qxx://外部flash
break;
default:
res=1;
}
//处理返回值,将SPI_SD_driver.c的返回值转成ff.c的返回值
if(res==0x00)return RES_OK;
else return RES_ERROR;
}
最后,这是《sdio_sdcard.c》代码的全部(代码略长,这里建议用ctrl+F,例如搜寻SD_Init)
#include "sdio_sdcard.h"
#include "string.h"
#include "sys.h"
#include "usart.h"
/*用于sdio初始化的结构体*/
SDIO_InitTypeDef SDIO_InitStructure;
SDIO_CmdInitTypeDef SDIO_CmdInitStructure;
SDIO_DataInitTypeDef SDIO_DataInitStructure;
SD_Error CmdError(void);
SD_Error CmdResp7Error(void);
SD_Error CmdResp1Error(u8 cmd);
SD_Error CmdResp3Error(void);
SD_Error CmdResp2Error(void);
SD_Error CmdResp6Error(u8 cmd,u16*prca);
SD_Error SDEnWideBus(u8 enx);
SD_Error IsCardProgramming(u8 *pstatus);
SD_Error FindSCR(u16 rca,u32 *pscr);
u8 convert_from_bytes_to_power_of_two(u16 NumberOfBytes);
static u8 CardType=SDIO_STD_CAPACITY_SD_CARD_V1_1; //SD卡类型(默认为1.x卡)
static u32 CSD_Tab[4],CID_Tab[4],RCA=0; //SD卡CSD,CID以及相对地址(RCA)数据
static u8 DeviceMode=SD_DMA_MODE; //工作模式,注意,工作模式必须通过SD_SetDeviceMode,后才算数.这里只是定义一个默认的模式(SD_DMA_MODE)
static u8 StopCondition=0; //是否发送停止传输标志位,DMA多块读写的时候用到
volatile SD_Error TransferError=SD_OK; //数据传输错误标志,DMA读写时使用
volatile u8 TransferEnd=0; //传输结束标志,DMA读写时使用
SD_CardInfo SDCardInfo; //SD卡信息
//SD_ReadDisk/SD_WriteDisk函数专用buf,当这两个函数的数据缓存区地址不是4字节对齐的时候,
//需要用到该数组,确保数据缓存区地址是4字节对齐的.
__align(4) u8 SDIO_DATA_BUFFER[512];
void SDIO_Register_Deinit()
{
SDIO->POWER=0x00000000;
SDIO->CLKCR=0x00000000;
SDIO->ARG=0x00000000;
SDIO->CMD=0x00000000;
SDIO->DTIMER=0x00000000;
SDIO->DLEN=0x00000000;
SDIO->DCTRL=0x00000000;
SDIO->ICR=0x00C007FF;
SDIO->MASK=0x00000000;
}
//初始化SD卡
//返回值:错误代码;(0,无错误)
SD_Error SD_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
SD\_Error errorstatus=SD\_OK;
u8 clkdiv=0;
RCC\_AHB1PeriphClockCmd(RCC\_AHB1Periph\_GPIOC|RCC\_AHB1Periph\_GPIOD|RCC\_AHB1Periph\_DMA2, ENABLE);//使能GPIOC,GPIOD DMA2时钟
RCC\_APB2PeriphClockCmd(RCC\_APB2Periph\_SDIO, ENABLE);//SDIO时钟使能
RCC\_APB2PeriphResetCmd(RCC\_APB2Periph\_SDIO, ENABLE);//SDIO复位
GPIO\_InitStructure.GPIO\_Pin =GPIO\_Pin\_8|GPIO\_Pin\_9|GPIO\_Pin\_10|GPIO\_Pin\_11|GPIO\_Pin\_12; //PC8,9,10,11,12复用功能输出
GPIO\_InitStructure.GPIO\_Mode = GPIO\_Mode\_AF;//复用功能
GPIO\_InitStructure.GPIO\_Speed = GPIO\_Speed\_50MHz;//100M
GPIO\_InitStructure.GPIO\_OType = GPIO\_OType\_PP;
GPIO\_InitStructure.GPIO\_PuPd = GPIO\_PuPd\_UP;//上拉
GPIO\_Init(GPIOC, &GPIO\_InitStructure);// PC8,9,10,11,12复用功能输出
GPIO\_InitStructure.GPIO\_Pin =GPIO\_Pin\_2;
GPIO\_Init(GPIOD, &GPIO\_InitStructure);//PD2复用功能输出
//引脚复用映射设置
GPIO\_PinAFConfig(GPIOC,GPIO\_PinSource8,GPIO\_AF\_SDIO); //PC8,AF12
GPIO\_PinAFConfig(GPIOC,GPIO\_PinSource9,GPIO\_AF\_SDIO);
GPIO\_PinAFConfig(GPIOC,GPIO\_PinSource10,GPIO\_AF\_SDIO);
GPIO\_PinAFConfig(GPIOC,GPIO\_PinSource11,GPIO\_AF\_SDIO);
GPIO\_PinAFConfig(GPIOC,GPIO\_PinSource12,GPIO\_AF\_SDIO);
GPIO\_PinAFConfig(GPIOD,GPIO\_PinSource2,GPIO\_AF\_SDIO);
RCC\_APB2PeriphResetCmd(RCC\_APB2Periph\_SDIO, DISABLE);//SDIO结束复位
//SDIO外设寄存器设置为默认值
SDIO\_Register\_Deinit();
NVIC\_InitStructure.NVIC\_IRQChannel = SDIO\_IRQn;
NVIC\_InitStructure.NVIC\_IRQChannelPreemptionPriority=0;//抢占优先级3
NVIC\_InitStructure.NVIC\_IRQChannelSubPriority =0; //子优先级3
NVIC\_InitStructure.NVIC\_IRQChannelCmd = ENABLE; //IRQ通道使能
NVIC\_Init(&NVIC\_InitStructure); //根据指定的参数初始化VIC寄存器
errorstatus=SD\_PowerON(); //SD卡上电,设置频率不超过400KHz,做一系列的判断,检测卡的类型等等,最后返回响应结果。现阶段最后有可能的命令是CMD41(SD卡)或是CND1(MMC卡)
if(errorstatus==SD\_OK)errorstatus=SD\_InitializeCards(); //初始化SD卡(发送CMD2、CMD3、CMD9,CMD9之后,进入数据传输模式)
if(errorstatus==SD\_OK)errorstatus=SD\_GetCardInfo(&SDCardInfo); //获取卡信息(解析SD卡,例如容量)
if(errorstatus==SD\_OK)errorstatus=SD\_SelectDeselect((u32)(SDCardInfo.RCA<<16));//选中SD卡
if(errorstatus==SD\_OK)errorstatus=SD\_EnableWideBusOperation(SDIO\_BusWide\_4b); //设置4位数据宽度,MMC卡则需用8位
if((errorstatus==SD\_OK)||(SDIO\_MULTIMEDIA\_CARD==CardType)) {
// 判断SD卡版本,来设置卡的时钟
if(SDCardInfo.CardType==SDIO\_STD\_CAPACITY\_SD\_CARD\_V1\_1||SDCardInfo.CardType==SDIO\_STD\_CAPACITY\_SD\_CARD\_V2\_0)
{
clkdiv=SDIO\_TRANSFER\_CLK\_DIV+2; //V1.1/V2.0卡,设置最高48/4=12Mhz
}
else clkdiv=SDIO\_TRANSFER\_CLK\_DIV; //SDHC等其他卡,设置最高48/2=24Mhz
SDIO\_Clock\_Set(clkdiv); //设置时钟频率,SDIO时钟计算公式:SDIO\_CK时钟=SDIOCLK/\[clkdiv+2\];其中,SDIOCLK固定为48Mhz
//errorstatus=SD\_SetDeviceMode(SD\_DMA\_MODE); //设置为DMA模式
errorstatus=SD\_SetDeviceMode(SD\_POLLING\_MODE);//设置为查询模式
}
return errorstatus;
}
//SDIO时钟初始化设置
//clkdiv:时钟分频系数
//CK时钟=SDIOCLK/[clkdiv+2];(SDIOCLK时钟固定为48Mhz)
void SDIO_Clock_Set(u8 clkdiv)
{
u32 tmpreg=SDIO->CLKCR;
tmpreg&=0XFFFFFF00;
tmpreg|=clkdiv;
SDIO->CLKCR=tmpreg;
}
//卡上电
//查询所有SDIO接口上的卡设备,并查询其电压和配置时钟
//返回值:错误代码;(0,无错误)
SD_Error SD_PowerON(void)
{
u8 i=0;
SD_Error errorstatus=SD_OK;
u32 response=0,count=0,validvoltage=0;
u32 SDType=SD_STD_CAPACITY;
/\*初始化时的时钟不能大于400KHz\*/
SDIO_InitStructure.SDIO_ClockDiv = SDIO_INIT_CLK_DIV; /* HCLK = 72MHz, SDIOCLK = 72MHz, SDIO_CK = HCLK/(178 + 2) = 400 KHz */
SDIO_InitStructure.SDIO_ClockEdge = SDIO_ClockEdge_Rising;
SDIO_InitStructure.SDIO_ClockBypass = SDIO_ClockBypass_Disable; //不使用bypass模式,直接用HCLK进行分频得到SDIO_CK
SDIO_InitStructure.SDIO_ClockPowerSave = SDIO_ClockPowerSave_Disable; // 空闲时不关闭时钟电源
SDIO_InitStructure.SDIO_BusWide = SDIO_BusWide_1b; //1位数据线
SDIO_InitStructure.SDIO_HardwareFlowControl = SDIO_HardwareFlowControl_Disable;//硬件流
SDIO_Init(&SDIO_InitStructure);
SDIO\_SetPowerState(SDIO\_PowerState\_ON); //上电状态,开启卡时钟
SDIO->CLKCR|=1<<8; //SDIOCK使能
/\* --------------------------------- 执行CMD0 ------------------------------------ \*/
for(i=0;i<74;i++)
{
SDIO\_CmdInitStructure.SDIO\_Argument = 0x0;//发送CMD0进入IDLE STAGE模式命令.
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_GO\_IDLE\_STATE; //cmd0
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_No; //无响应
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable; //则CPSM在开始发送命令之前等待数据传输结束。
SDIO\_SendCommand(&SDIO\_CmdInitStructure); //写命令进命令寄存器
errorstatus=CmdError();
if(errorstatus==SD\_OK)break;
}
if(errorstatus)return errorstatus;//返回错误状态
/\* --------------------------------- 执行CMD8 ------------------------------------ \*/
SDIO_CmdInitStructure.SDIO_Argument = SD_CHECK_PATTERN; //发送CMD8,短响应,检查SD卡接口特性
SDIO_CmdInitStructure.SDIO_CmdIndex = SDIO_SEND_IF_COND; //cmd8
SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short; //r7
SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No; //关闭等待中断
SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable;
SDIO_SendCommand(&SDIO_CmdInitStructure);
errorstatus=CmdResp7Error(); //等待R7响应
/\* --------------------------------- 执行CMD55 ------------------------------------ \*/
if(errorstatus==SD\_OK) //R7响应正常
{
CardType=SDIO\_STD\_CAPACITY\_SD\_CARD\_V2\_0; //SD 2.0卡
SDType=SD\_HIGH\_CAPACITY; //高容量卡
}
SDIO\_CmdInitStructure.SDIO\_Argument = 0x00;//发送CMD55,短响应
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_APP\_CMD;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short;
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure); //发送CMD55,短响应
errorstatus=CmdResp1Error(SD_CMD_APP_CMD); //等待R1响应
if(errorstatus==SD\_OK)//SD2.0/SD 1.1,否则为MMC卡
{
//SD卡,发送ACMD41 SD\_APP\_OP\_COND,参数为:0x80100000
while((!validvoltage)&&(count<SD\_MAX\_VOLT\_TRIAL))
{
// 这里有个疑问,上面已经发送过CMD55了,为什么这里还要再发一次,我知道CMD55是复合指令,发送CMD41之前需要发送的
// 但下面又再发送一次,正点原子完全不解释,非常顺其自然的带过,野火也怀疑了一下,但是也不清楚为什么这么做
SDIO\_CmdInitStructure.SDIO\_Argument = 0x00;//发送CMD55,短响应
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_APP\_CMD; //CMD55
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short;
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure); //发送CMD55,短响应
errorstatus=CmdResp1Error(SD\_CMD\_APP\_CMD); //等待R1响应
if(errorstatus!=SD\_OK)return errorstatus; //响应错误
//acmd41,命令参数由支持的电压范围及HCS位组成,HCS位置一来区分卡是SDSc还是sdhc
SDIO\_CmdInitStructure.SDIO\_Argument = SD\_VOLTAGE\_WINDOW\_SD | SDType; //发送ACMD41,短响应
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_SD\_APP\_OP\_COND;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short; //r3
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure);
errorstatus=CmdResp3Error(); //等待R3响应
if(errorstatus!=SD\_OK)return errorstatus; //响应错误
response=SDIO->RESP1;; //得到响应
validvoltage=(((response>>31)==1)?1:0); //判断SD卡上电是否完成
count++;
}
if(count>=SD\_MAX\_VOLT\_TRIAL)
{
errorstatus=SD\_INVALID\_VOLTRANGE;
return errorstatus;
}
if(response&=SD\_HIGH\_CAPACITY)
{
CardType=SDIO\_HIGH\_CAPACITY\_SD\_CARD;
}
}
else//MMC卡
{
//MMC卡,发送CMD1 SDIO\_SEND\_OP\_COND,参数为:0x80FF8000
while((!validvoltage)&&(count<SD\_MAX\_VOLT\_TRIAL))
{
SDIO\_CmdInitStructure.SDIO\_Argument = SD\_VOLTAGE\_WINDOW\_MMC;//发送CMD1,短响应
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_SEND\_OP\_COND;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short; //r3
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure);
errorstatus=CmdResp3Error(); //等待R3响应
if(errorstatus!=SD\_OK)return errorstatus; //响应错误
response=SDIO->RESP1;; //得到响应
validvoltage=(((response>>31)==1)?1:0);
count++;
}
if(count>=SD\_MAX\_VOLT\_TRIAL)
{
errorstatus=SD\_INVALID\_VOLTRANGE;
return errorstatus;
}
CardType=SDIO\_MULTIMEDIA\_CARD;
}
return(errorstatus);
}
//SD卡 Power OFF
//返回值:错误代码;(0,无错误)
SD_Error SD_PowerOFF(void)
{
SDIO_SetPowerState(SDIO_PowerState_OFF);//SDIO电源关闭,时钟停止
return SD_OK;
}
//初始化所有的卡,并让卡进入就绪状态
//返回值:错误代码
SD_Error SD_InitializeCards(void)
{
SD_Error errorstatus=SD_OK;
u16 rca = 0x01;
if (SDIO_GetPowerState() == SDIO_PowerState_OFF) //检查电源状态,确保为上电状态
{
errorstatus = SD_REQUEST_NOT_APPLICABLE;
return(errorstatus);
}
if(SDIO\_SECURE\_DIGITAL\_IO\_CARD!=CardType) //非SECURE\_DIGITAL\_IO\_CARD
{
SDIO\_CmdInitStructure.SDIO\_Argument = 0x0;//发送CMD2,取得CID,长响应
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_ALL\_SEND\_CID;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Long;
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure);//发送CMD2,取得CID,长响应
errorstatus=CmdResp2Error(); //等待R2响应
if(errorstatus!=SD\_OK)return errorstatus; //响应错误
CID\_Tab\[0\]=SDIO->RESP1;
CID\_Tab\[1\]=SDIO->RESP2;
CID\_Tab\[2\]=SDIO->RESP3;
CID\_Tab\[3\]=SDIO->RESP4;
}
if((SDIO\_STD\_CAPACITY\_SD\_CARD\_V1\_1==CardType)||(SDIO\_STD\_CAPACITY\_SD\_CARD\_V2\_0==CardType)||(SDIO\_SECURE\_DIGITAL\_IO\_COMBO\_CARD==CardType)||(SDIO\_HIGH\_CAPACITY\_SD\_CARD==CardType))//判断卡类型
{
SDIO\_CmdInitStructure.SDIO\_Argument = 0x00;//发送CMD3,短响应
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_SET\_REL\_ADDR; //cmd3
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short; //r6
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure); //发送CMD3,短响应
errorstatus=CmdResp6Error(SD\_CMD\_SET\_REL\_ADDR,&rca);//等待R6响应
if(errorstatus!=SD\_OK)return errorstatus; //响应错误
}
if (SDIO\_MULTIMEDIA\_CARD==CardType)
{
SDIO\_CmdInitStructure.SDIO\_Argument = (u32)(rca<<16);//发送CMD3,短响应
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_SET\_REL\_ADDR; //cmd3
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short; //r6
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure); //发送CMD3,短响应
errorstatus=CmdResp2Error(); //等待R2响应
if(errorstatus!=SD\_OK)return errorstatus; //响应错误
}
if (SDIO\_SECURE\_DIGITAL\_IO\_CARD!=CardType) //非SECURE\_DIGITAL\_IO\_CARD
{
RCA = rca;
SDIO\_CmdInitStructure.SDIO\_Argument = (uint32\_t)(rca << 16);//发送CMD9+卡RCA,取得CSD,长响应
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_SEND\_CSD;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Long;
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure);
errorstatus=CmdResp2Error(); //等待R2响应
if(errorstatus!=SD\_OK)return errorstatus; //响应错误
CSD\_Tab\[0\]=SDIO->RESP1;
CSD\_Tab\[1\]=SDIO->RESP2;
CSD\_Tab\[2\]=SDIO->RESP3;
CSD\_Tab\[3\]=SDIO->RESP4;
}
return SD\_OK;//卡初始化成功
}
//得到卡信息
//cardinfo:卡信息存储区
//返回值:错误状态
SD_Error SD_GetCardInfo(SD_CardInfo *cardinfo)
{
SD_Error errorstatus=SD_OK;
u8 tmp=0;
cardinfo->CardType=(u8)CardType; //卡类型
cardinfo->RCA=(u16)RCA; //卡RCA值
tmp=(u8)((CSD_Tab[0]&0xFF000000)>>24);
cardinfo->SD_csd.CSDStruct=(tmp&0xC0)>>6; //CSD结构
cardinfo->SD_csd.SysSpecVersion=(tmp&0x3C)>>2; //2.0协议还没定义这部分(为保留),应该是后续协议定义的
cardinfo->SD_csd.Reserved1=tmp&0x03; //2个保留位
tmp=(u8)((CSD_Tab[0]&0x00FF0000)>>16); //第1个字节
cardinfo->SD_csd.TAAC=tmp; //数据读时间1
tmp=(u8)((CSD_Tab[0]&0x0000FF00)>>8); //第2个字节
cardinfo->SD_csd.NSAC=tmp; //数据读时间2
tmp=(u8)(CSD_Tab[0]&0x000000FF); //第3个字节
cardinfo->SD_csd.MaxBusClkFrec=tmp; //传输速度
tmp=(u8)((CSD_Tab[1]&0xFF000000)>>24); //第4个字节
cardinfo->SD_csd.CardComdClasses=tmp<<4; //卡指令类高四位
tmp=(u8)((CSD_Tab[1]&0x00FF0000)>>16); //第5个字节
cardinfo->SD_csd.CardComdClasses|=(tmp&0xF0)>>4;//卡指令类低四位
cardinfo->SD_csd.RdBlockLen=tmp&0x0F; //最大读取数据长度
tmp=(u8)((CSD_Tab[1]&0x0000FF00)>>8); //第6个字节
cardinfo->SD_csd.PartBlockRead=(tmp&0x80)>>7; //允许分块读
cardinfo->SD_csd.WrBlockMisalign=(tmp&0x40)>>6; //写块错位
cardinfo->SD_csd.RdBlockMisalign=(tmp&0x20)>>5; //读块错位
cardinfo->SD_csd.DSRImpl=(tmp&0x10)>>4;
cardinfo->SD_csd.Reserved2=0; //保留
if((CardType==SDIO_STD_CAPACITY_SD_CARD_V1_1)||(CardType==SDIO_STD_CAPACITY_SD_CARD_V2_0)||(SDIO_MULTIMEDIA_CARD==CardType))//标准1.1/2.0卡/MMC卡
{
cardinfo->SD_csd.DeviceSize=(tmp&0x03)<<10; //C_SIZE(12位)
tmp=(u8)(CSD_Tab[1]&0x000000FF); //第7个字节
cardinfo->SD_csd.DeviceSize|=(tmp)<<2;
tmp=(u8)((CSD_Tab[2]&0xFF000000)>>24); //第8个字节
cardinfo->SD_csd.DeviceSize|=(tmp&0xC0)>>6;
cardinfo->SD_csd.MaxRdCurrentVDDMin=(tmp&0x38)>>3;
cardinfo->SD_csd.MaxRdCurrentVDDMax=(tmp&0x07);
tmp=(u8)((CSD_Tab[2]&0x00FF0000)>>16); //第9个字节
cardinfo->SD_csd.MaxWrCurrentVDDMin=(tmp&0xE0)>>5;
cardinfo->SD_csd.MaxWrCurrentVDDMax=(tmp&0x1C)>>2;
cardinfo->SD_csd.DeviceSizeMul=(tmp&0x03)<<1;//C_SIZE_MULT
tmp=(u8)((CSD_Tab[2]&0x0000FF00)>>8); //第10个字节
cardinfo->SD_csd.DeviceSizeMul|=(tmp&0x80)>>7;
cardinfo->CardCapacity=(cardinfo->SD_csd.DeviceSize+1);//计算卡容量
cardinfo->CardCapacity*=(1<<(cardinfo->SD_csd.DeviceSizeMul+2));
cardinfo->CardBlockSize=1<<(cardinfo->SD_csd.RdBlockLen);//块大小
cardinfo->CardCapacity*=cardinfo->CardBlockSize;
}else if(CardType==SDIO_HIGH_CAPACITY_SD_CARD) //高容量卡
{
tmp=(u8)(CSD_Tab[1]&0x000000FF); //第7个字节
cardinfo->SD_csd.DeviceSize=(tmp&0x3F)<<16;//C_SIZE
tmp=(u8)((CSD_Tab[2]&0xFF000000)>>24); //第8个字节
cardinfo->SD_csd.DeviceSize|=(tmp<<8);
tmp=(u8)((CSD_Tab[2]&0x00FF0000)>>16); //第9个字节
cardinfo->SD_csd.DeviceSize|=(tmp);
tmp=(u8)((CSD_Tab[2]&0x0000FF00)>>8); //第10个字节
cardinfo->CardCapacity=(long long)(cardinfo->SD_csd.DeviceSize+1)*512*1024;//计算卡容量
cardinfo->CardBlockSize=512; //块大小固定为512字节
}
cardinfo->SD_csd.EraseGrSize=(tmp&0x40)>>6;
cardinfo->SD_csd.EraseGrMul=(tmp&0x3F)<<1;
tmp=(u8)(CSD_Tab[2]&0x000000FF); //第11个字节
cardinfo->SD_csd.EraseGrMul|=(tmp&0x80)>>7;
cardinfo->SD_csd.WrProtectGrSize=(tmp&0x7F);
tmp=(u8)((CSD_Tab[3]&0xFF000000)>>24); //第12个字节
cardinfo->SD_csd.WrProtectGrEnable=(tmp&0x80)>>7;
cardinfo->SD_csd.ManDeflECC=(tmp&0x60)>>5;
cardinfo->SD_csd.WrSpeedFact=(tmp&0x1C)>>2;
cardinfo->SD_csd.MaxWrBlockLen=(tmp&0x03)<<2;
tmp=(u8)((CSD_Tab[3]&0x00FF0000)>>16); //第13个字节
cardinfo->SD_csd.MaxWrBlockLen|=(tmp&0xC0)>>6;
cardinfo->SD_csd.WriteBlockPaPartial=(tmp&0x20)>>5;
cardinfo->SD_csd.Reserved3=0;
cardinfo->SD_csd.ContentProtectAppli=(tmp&0x01);
tmp=(u8)((CSD_Tab[3]&0x0000FF00)>>8); //第14个字节
cardinfo->SD_csd.FileFormatGrouop=(tmp&0x80)>>7;
cardinfo->SD_csd.CopyFlag=(tmp&0x40)>>6;
cardinfo->SD_csd.PermWrProtect=(tmp&0x20)>>5;
cardinfo->SD_csd.TempWrProtect=(tmp&0x10)>>4;
cardinfo->SD_csd.FileFormat=(tmp&0x0C)>>2;
cardinfo->SD_csd.ECC=(tmp&0x03);
tmp=(u8)(CSD_Tab[3]&0x000000FF); //第15个字节
cardinfo->SD_csd.CSD_CRC=(tmp&0xFE)>>1;
cardinfo->SD_csd.Reserved4=1;
tmp=(u8)((CID_Tab[0]&0xFF000000)>>24); //第0个字节
cardinfo->SD_cid.ManufacturerID=tmp;
tmp=(u8)((CID_Tab[0]&0x00FF0000)>>16); //第1个字节
cardinfo->SD_cid.OEM_AppliID=tmp<<8;
tmp=(u8)((CID_Tab[0]&0x000000FF00)>>8); //第2个字节
cardinfo->SD_cid.OEM_AppliID|=tmp;
tmp=(u8)(CID_Tab[0]&0x000000FF); //第3个字节
cardinfo->SD_cid.ProdName1=tmp<<24;
tmp=(u8)((CID_Tab[1]&0xFF000000)>>24); //第4个字节
cardinfo->SD_cid.ProdName1|=tmp<<16;
tmp=(u8)((CID_Tab[1]&0x00FF0000)>>16); //第5个字节
cardinfo->SD_cid.ProdName1|=tmp<<8;
tmp=(u8)((CID_Tab[1]&0x0000FF00)>>8); //第6个字节
cardinfo->SD_cid.ProdName1|=tmp;
tmp=(u8)(CID_Tab[1]&0x000000FF); //第7个字节
cardinfo->SD_cid.ProdName2=tmp;
tmp=(u8)((CID_Tab[2]&0xFF000000)>>24); //第8个字节
cardinfo->SD_cid.ProdRev=tmp;
tmp=(u8)((CID_Tab[2]&0x00FF0000)>>16); //第9个字节
cardinfo->SD_cid.ProdSN=tmp<<24;
tmp=(u8)((CID_Tab[2]&0x0000FF00)>>8); //第10个字节
cardinfo->SD_cid.ProdSN|=tmp<<16;
tmp=(u8)(CID_Tab[2]&0x000000FF); //第11个字节
cardinfo->SD_cid.ProdSN|=tmp<<8;
tmp=(u8)((CID_Tab[3]&0xFF000000)>>24); //第12个字节
cardinfo->SD_cid.ProdSN|=tmp;
tmp=(u8)((CID_Tab[3]&0x00FF0000)>>16); //第13个字节
cardinfo->SD_cid.Reserved1|=(tmp&0xF0)>>4;
cardinfo->SD_cid.ManufactDate=(tmp&0x0F)<<8;
tmp=(u8)((CID_Tab[3]&0x0000FF00)>>8); //第14个字节
cardinfo->SD_cid.ManufactDate|=tmp;
tmp=(u8)(CID_Tab[3]&0x000000FF); //第15个字节
cardinfo->SD_cid.CID_CRC=(tmp&0xFE)>>1;
cardinfo->SD_cid.Reserved2=1;
return errorstatus;
}
//设置SDIO总线宽度(MMC卡不支持4bit模式)
//wmode:位宽模式.0,1位数据宽度;1,4位数据宽度;2,8位数据宽度
//返回值:SD卡错误状态
//设置SDIO总线宽度(MMC卡不支持4bit模式)
// @arg SDIO_BusWide_8b: 8-bit data transfer (Only for MMC)
// @arg SDIO_BusWide_4b: 4-bit data transfer
// @arg SDIO_BusWide_1b: 1-bit data transfer (默认)
//返回值:SD卡错误状态
SD_Error SD_EnableWideBusOperation(u32 WideMode)
{
SD_Error errorstatus=SD_OK;
if (SDIO_MULTIMEDIA_CARD == CardType)
{
errorstatus = SD_UNSUPPORTED_FEATURE;
return(errorstatus);
}
else if((SDIO\_STD\_CAPACITY\_SD\_CARD\_V1\_1==CardType)||(SDIO\_STD\_CAPACITY\_SD\_CARD\_V2\_0==CardType)||(SDIO\_HIGH\_CAPACITY\_SD\_CARD==CardType))
{
if (SDIO\_BusWide\_8b == WideMode) //2.0 sd不支持8bits
{
errorstatus = SD\_UNSUPPORTED\_FEATURE;
return(errorstatus);
}
else
{
errorstatus=SDEnWideBus(WideMode);
if(SD\_OK==errorstatus)
{
SDIO->CLKCR&=~(3<<11); //清除之前的位宽设置
SDIO->CLKCR|=WideMode;//1位/4位总线宽度
SDIO->CLKCR|=0<<14; //不开启硬件流控制
}
}
}
return errorstatus;
}
//设置SD卡工作模式
//Mode:
//返回值:错误状态
SD_Error SD_SetDeviceMode(u32 Mode)
{
SD_Error errorstatus = SD_OK;
if((Mode==SD_DMA_MODE)||(Mode==SD_POLLING_MODE))DeviceMode=Mode;
else errorstatus=SD_INVALID_PARAMETER;
return errorstatus;
}
//选卡
//发送CMD7,选择相对地址(rca)为addr的卡,取消其他卡.如果为0,则都不选择.
//addr:卡的RCA地址
SD_Error SD_SelectDeselect(u32 addr)
{
SDIO_CmdInitStructure.SDIO_Argument = addr;//发送CMD7,选择卡,短响应
SDIO_CmdInitStructure.SDIO_CmdIndex = SD_CMD_SEL_DESEL_CARD;
SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short;
SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No;
SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable;
SDIO_SendCommand(&SDIO_CmdInitStructure);//发送CMD7,选择卡,短响应
return CmdResp1Error(SD\_CMD\_SEL\_DESEL\_CARD);
}
//SD卡读取一个块
//buf:读数据缓存区(必须4字节对齐!!)
//addr:读取地址
//blksize:块大小
SD_Error SD_ReadBlock(u8 *buf,long long addr,u16 blksize)
{
SD_Error errorstatus=SD_OK;
u8 power;
u32 count=0,*tempbuff=(u32*)buf;//转换为u32指针
u32 timeout=SDIO_DATATIMEOUT;
if(NULL==buf)
return SD_INVALID_PARAMETER;
SDIO->DCTRL=0x0; //数据控制寄存器清零(关DMA)
if(CardType==SDIO\_HIGH\_CAPACITY\_SD\_CARD)//大容量卡
{
blksize=512;
addr>>=9;
}
SDIO\_DataInitStructure.SDIO\_DataBlockSize= SDIO\_DataBlockSize\_1b ;//清除DPSM状态机配置
SDIO\_DataInitStructure.SDIO\_DataLength= 0 ;
SDIO\_DataInitStructure.SDIO\_DataTimeOut=SD\_DATATIMEOUT ;
SDIO\_DataInitStructure.SDIO\_DPSM=SDIO\_DPSM\_Enable;
SDIO\_DataInitStructure.SDIO\_TransferDir=SDIO\_TransferDir\_ToCard;
SDIO\_DataInitStructure.SDIO\_TransferMode=SDIO\_TransferMode\_Block;
SDIO\_DataConfig(&SDIO\_DataInitStructure);
if(SDIO->RESP1&SD\_CARD\_LOCKED)return SD\_LOCK\_UNLOCK\_FAILED;//卡锁了
if((blksize>0)&&(blksize<=2048)&&((blksize&(blksize-1))==0))
{
power=convert\_from\_bytes\_to\_power\_of\_two(blksize);
SDIO\_CmdInitStructure.SDIO\_Argument = blksize;
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_SET\_BLOCKLEN;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short;
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure);//发送CMD16+设置数据长度为blksize,短响应
errorstatus=CmdResp1Error(SD\_CMD\_SET\_BLOCKLEN); //等待R1响应
if(errorstatus!=SD\_OK)return errorstatus; //响应错误
}else return SD\_INVALID\_PARAMETER;
SDIO\_DataInitStructure.SDIO\_DataBlockSize= power<<4 ;//清除DPSM状态机配置
SDIO\_DataInitStructure.SDIO\_DataLength= blksize ;
SDIO\_DataInitStructure.SDIO\_DataTimeOut=SD\_DATATIMEOUT ;
SDIO\_DataInitStructure.SDIO\_DPSM=SDIO\_DPSM\_Enable;
SDIO\_DataInitStructure.SDIO\_TransferDir=SDIO\_TransferDir\_ToSDIO;
SDIO\_DataInitStructure.SDIO\_TransferMode=SDIO\_TransferMode\_Block;
SDIO\_DataConfig(&SDIO\_DataInitStructure);
SDIO\_CmdInitStructure.SDIO\_Argument = addr;
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_READ\_SINGLE\_BLOCK;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short;
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure);//发送CMD17+从addr地址出读取数据,短响应
errorstatus=CmdResp1Error(SD\_CMD\_READ\_SINGLE\_BLOCK);//等待R1响应
if(errorstatus!=SD\_OK)return errorstatus; //响应错误
if(DeviceMode==SD\_POLLING\_MODE) //查询模式,轮询数据
{
INTX\_DISABLE();//关闭总中断(POLLING模式,严禁中断打断SDIO读写操作!!!)
while(!(SDIO->STA&((1<<5)|(1<<1)|(1<<3)|(1<<10)|(1<<9))))//无上溢/CRC/超时/完成(标志)/起始位错误
{
if(SDIO\_GetFlagStatus(SDIO\_FLAG\_RXFIFOHF) != RESET) //接收区半满,表示至少存了8个字
{
for(count=0;count<8;count++) //循环读取数据
{
\*(tempbuff+count)=SDIO->FIFO;
}
tempbuff+=8;
timeout=0X7FFFFF; //读数据溢出时间
}else //处理超时
{
if(timeout==0)return SD\_DATA\_TIMEOUT;
timeout--;
}
}
if(SDIO\_GetFlagStatus(SDIO\_FLAG\_DTIMEOUT) != RESET) //数据超时错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_DTIMEOUT); //清错误标志
return SD\_DATA\_TIMEOUT;
}else if(SDIO\_GetFlagStatus(SDIO\_FLAG\_DCRCFAIL) != RESET) //数据块CRC错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_DCRCFAIL); //清错误标志
return SD\_DATA\_CRC\_FAIL;
}else if(SDIO\_GetFlagStatus(SDIO\_FLAG\_RXOVERR) != RESET) //接收fifo上溢错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_RXOVERR); //清错误标志
return SD\_RX\_OVERRUN;
}else if(SDIO\_GetFlagStatus(SDIO\_FLAG\_STBITERR) != RESET) //接收起始位错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_STBITERR);//清错误标志
return SD\_START\_BIT\_ERR;
}
while(SDIO\_GetFlagStatus(SDIO\_FLAG\_RXDAVL) != RESET) //FIFO里面,还存在可用数据
{
\*tempbuff=SDIO->FIFO; //循环读取数据
tempbuff++;
}
INTX\_ENABLE();//开启总中断
SDIO\_ClearFlag(SDIO\_STATIC\_FLAGS);//清除所有标记
}else if(DeviceMode==SD\_DMA\_MODE)
{
TransferError=SD\_OK;
StopCondition=0; //单块读,不需要发送停止传输指令
TransferEnd=0; //传输结束标置位,在中断服务置1
SDIO->MASK|=(1<<1)|(1<<3)|(1<<8)|(1<<5)|(1<<9); //配置需要的中断
SDIO->DCTRL|=1<<3; //SDIO DMA使能
SD\_DMA\_Config((u32\*)buf,blksize,DMA\_DIR\_PeripheralToMemory);
while(((DMA2->LISR&(1<<27))==RESET)&&(TransferEnd==0)&&(TransferError==SD\_OK)&&timeout)timeout--;//等待传输完成
if(timeout==0)return SD\_DATA\_TIMEOUT;//超时
if(TransferError!=SD\_OK)errorstatus=TransferError;
}
return errorstatus;
}
//SD卡读取多个块
//buf:读数据缓存区
//addr:读取地址
//blksize:块大小
//nblks:要读取的块数
//返回值:错误状态
__align(4) u32 *tempbuff;
SD_Error SD_ReadMultiBlocks(u8 *buf,long long addr,u16 blksize,u32 nblks)
{
SD_Error errorstatus=SD_OK;
u8 power;
u32 count=0;
u32 timeout=SDIO_DATATIMEOUT;
tempbuff=(u32*)buf;//转换为u32指针
SDIO->DCTRL=0x0; //数据控制寄存器清零(关DMA)
if(CardType==SDIO_HIGH_CAPACITY_SD_CARD)//大容量卡
{
blksize=512;
addr>>=9;
}
SDIO\_DataInitStructure.SDIO\_DataBlockSize= 0; ;//清除DPSM状态机配置
SDIO\_DataInitStructure.SDIO\_DataLength= 0 ;
SDIO\_DataInitStructure.SDIO\_DataTimeOut=SD\_DATATIMEOUT ;
SDIO\_DataInitStructure.SDIO\_DPSM=SDIO\_DPSM\_Enable;
SDIO\_DataInitStructure.SDIO\_TransferDir=SDIO\_TransferDir\_ToCard;
SDIO\_DataInitStructure.SDIO\_TransferMode=SDIO\_TransferMode\_Block;
SDIO\_DataConfig(&SDIO\_DataInitStructure);
if(SDIO->RESP1&SD\_CARD\_LOCKED)return SD\_LOCK\_UNLOCK\_FAILED;//卡锁了
if((blksize>0)&&(blksize<=2048)&&((blksize&(blksize-1))==0))
{
power=convert\_from\_bytes\_to\_power\_of\_two(blksize);
SDIO\_CmdInitStructure.SDIO\_Argument = blksize;//发送CMD16+设置数据长度为blksize,短响应
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_SET\_BLOCKLEN;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short;
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure);
errorstatus=CmdResp1Error(SD\_CMD\_SET\_BLOCKLEN); //等待R1响应
if(errorstatus!=SD\_OK)return errorstatus; //响应错误
}else return SD\_INVALID\_PARAMETER;
if(nblks>1) //多块读
{
if(nblks\*blksize>SD\_MAX\_DATA\_LENGTH)return SD\_INVALID\_PARAMETER;//判断是否超过最大接收长度
SDIO\_DataInitStructure.SDIO\_DataBlockSize= power<<4; ;//nblks\*blksize,512块大小,卡到控制器
SDIO\_DataInitStructure.SDIO\_DataLength= nblks\*blksize ;
SDIO\_DataInitStructure.SDIO\_DataTimeOut=SD\_DATATIMEOUT ;
SDIO\_DataInitStructure.SDIO\_DPSM=SDIO\_DPSM\_Enable;
SDIO\_DataInitStructure.SDIO\_TransferDir=SDIO\_TransferDir\_ToSDIO;
SDIO\_DataInitStructure.SDIO\_TransferMode=SDIO\_TransferMode\_Block;
SDIO\_DataConfig(&SDIO\_DataInitStructure);
SDIO\_CmdInitStructure.SDIO\_Argument = addr;//发送CMD18+从addr地址出读取数据,短响应
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_READ\_MULT\_BLOCK;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short;
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure);
errorstatus=CmdResp1Error(SD\_CMD\_READ\_MULT\_BLOCK);//等待R1响应
if(errorstatus!=SD\_OK)return errorstatus; //响应错误
if(DeviceMode==SD\_POLLING\_MODE)
{
INTX\_DISABLE();//关闭总中断(POLLING模式,严禁中断打断SDIO读写操作!!!)
while(!(SDIO->STA&((1<<5)|(1<<1)|(1<<3)|(1<<8)|(1<<9))))//无上溢/CRC/超时/完成(标志)/起始位错误
{
if(SDIO\_GetFlagStatus(SDIO\_FLAG\_RXFIFOHF) != RESET) //接收区半满,表示至少存了8个字
{
for(count=0;count<8;count++) //循环读取数据
{
\*(tempbuff+count)=SDIO->FIFO;
}
tempbuff+=8;
timeout=0X7FFFFF; //读数据溢出时间
}else //处理超时
{
if(timeout==0)return SD\_DATA\_TIMEOUT;
timeout--;
}
}
if(SDIO\_GetFlagStatus(SDIO\_FLAG\_DTIMEOUT) != RESET) //数据超时错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_DTIMEOUT); //清错误标志
return SD\_DATA\_TIMEOUT;
}else if(SDIO\_GetFlagStatus(SDIO\_FLAG\_DCRCFAIL) != RESET) //数据块CRC错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_DCRCFAIL); //清错误标志
return SD\_DATA\_CRC\_FAIL;
}else if(SDIO\_GetFlagStatus(SDIO\_FLAG\_RXOVERR) != RESET) //接收fifo上溢错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_RXOVERR); //清错误标志
return SD\_RX\_OVERRUN;
}else if(SDIO\_GetFlagStatus(SDIO\_FLAG\_STBITERR) != RESET) //接收起始位错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_STBITERR);//清错误标志
return SD\_START\_BIT\_ERR;
}
while(SDIO\_GetFlagStatus(SDIO\_FLAG\_RXDAVL) != RESET) //FIFO里面,还存在可用数据
{
\*tempbuff=SDIO->FIFO; //循环读取数据
tempbuff++;
}
if(SDIO\_GetFlagStatus(SDIO\_FLAG\_DATAEND) != RESET) //接收结束
{
if((SDIO\_STD\_CAPACITY\_SD\_CARD\_V1\_1==CardType)||(SDIO\_STD\_CAPACITY\_SD\_CARD\_V2\_0==CardType)||(SDIO\_HIGH\_CAPACITY\_SD\_CARD==CardType))
{
SDIO\_CmdInitStructure.SDIO\_Argument = 0;//发送CMD12+结束传输
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_STOP\_TRANSMISSION;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short;
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure);
errorstatus=CmdResp1Error(SD\_CMD\_STOP\_TRANSMISSION);//等待R1响应
if(errorstatus!=SD\_OK)return errorstatus;
}
}
INTX\_ENABLE();//开启总中断
SDIO\_ClearFlag(SDIO\_STATIC\_FLAGS);//清除所有标记
}else if(DeviceMode==SD\_DMA\_MODE)
{
TransferError=SD\_OK;
StopCondition=1; //多块读,需要发送停止传输指令
TransferEnd=0; //传输结束标置位,在中断服务置1
SDIO->MASK|=(1<<1)|(1<<3)|(1<<8)|(1<<5)|(1<<9); //配置需要的中断
SDIO->DCTRL|=1<<3; //SDIO DMA使能
SD\_DMA\_Config((u32\*)buf,nblks\*blksize,DMA\_DIR\_PeripheralToMemory);
while(((DMA2->LISR&(1<<27))==RESET)&&timeout)timeout--;//等待传输完成
if(timeout==0)return SD\_DATA\_TIMEOUT;//超时
while((TransferEnd==0)&&(TransferError==SD\_OK));
if(TransferError!=SD\_OK)errorstatus=TransferError;
}
}
return errorstatus;
}
//SD卡写1个块
//buf:数据缓存区
//addr:写地址
//blksize:块大小
//返回值:错误状态
SD_Error SD_WriteBlock(u8 *buf,long long addr, u16 blksize)
{
SD_Error errorstatus = SD_OK;
u8 power=0,cardstate=0;
u32 timeout=0,bytestransferred=0;
u32 cardstatus=0,count=0,restwords=0;
u32 tlen=blksize; //总长度(字节)
u32\*tempbuff=(u32\*)buf;
if(buf==NULL)return SD\_INVALID\_PARAMETER;//参数错误
SDIO->DCTRL=0x0; //数据控制寄存器清零(关DMA)
SDIO\_DataInitStructure.SDIO\_DataBlockSize= 0; ;//清除DPSM状态机配置
SDIO\_DataInitStructure.SDIO\_DataLength= 0 ;
SDIO\_DataInitStructure.SDIO\_DataTimeOut=SD\_DATATIMEOUT ;
SDIO\_DataInitStructure.SDIO\_DPSM=SDIO\_DPSM\_Enable;
SDIO\_DataInitStructure.SDIO\_TransferDir=SDIO\_TransferDir\_ToCard;
SDIO\_DataInitStructure.SDIO\_TransferMode=SDIO\_TransferMode\_Block;
SDIO_DataConfig(&SDIO_DataInitStructure);
if(SDIO->RESP1&SD\_CARD\_LOCKED)return SD\_LOCK\_UNLOCK\_FAILED;//卡锁了
if(CardType==SDIO\_HIGH\_CAPACITY\_SD\_CARD) //大容量卡
{
blksize=512;
addr>>=9;
}
if((blksize>0)&&(blksize<=2048)&&((blksize&(blksize-1))==0))
{
power=convert\_from\_bytes\_to\_power\_of\_two(blksize);
SDIO\_CmdInitStructure.SDIO\_Argument = blksize;//发送CMD16+设置数据长度为blksize,短响应
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_SET\_BLOCKLEN;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short;
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure);
errorstatus=CmdResp1Error(SD\_CMD\_SET\_BLOCKLEN); //等待R1响应
if(errorstatus!=SD\_OK)return errorstatus; //响应错误
}else return SD\_INVALID\_PARAMETER;
SDIO\_CmdInitStructure.SDIO\_Argument = (u32)RCA<<16;//发送CMD13,查询卡的状态,短响应
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_SEND\_STATUS;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short;
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure);
errorstatus=CmdResp1Error(SD\_CMD\_SEND\_STATUS); //等待R1响应
if(errorstatus!=SD\_OK)return errorstatus;
cardstatus=SDIO->RESP1;
timeout=SD\_DATATIMEOUT;
while(((cardstatus&0x00000100)==0)&&(timeout>0)) //检查READY\_FOR\_DATA位是否置位
{
timeout--;
SDIO\_CmdInitStructure.SDIO\_Argument = (u32)RCA<<16;//发送CMD13,查询卡的状态,短响应
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_SEND\_STATUS;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short;
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure);
errorstatus=CmdResp1Error(SD\_CMD\_SEND\_STATUS); //等待R1响应
if(errorstatus!=SD\_OK)return errorstatus;
cardstatus=SDIO->RESP1;
}
if(timeout==0)return SD\_ERROR;
SDIO\_CmdInitStructure.SDIO\_Argument = addr;//发送CMD24,写单块指令,短响应
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_WRITE\_SINGLE\_BLOCK;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short;
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure);
errorstatus=CmdResp1Error(SD\_CMD\_WRITE\_SINGLE\_BLOCK);//等待R1响应
if(errorstatus!=SD\_OK)return errorstatus;
StopCondition=0; //单块写,不需要发送停止传输指令
SDIO\_DataInitStructure.SDIO\_DataBlockSize= power<<4; ; //blksize, 控制器到卡
SDIO\_DataInitStructure.SDIO\_DataLength= blksize ;
SDIO\_DataInitStructure.SDIO\_DataTimeOut=SD\_DATATIMEOUT ;
SDIO\_DataInitStructure.SDIO\_DPSM=SDIO\_DPSM\_Enable;
SDIO\_DataInitStructure.SDIO\_TransferDir=SDIO\_TransferDir\_ToCard;
SDIO\_DataInitStructure.SDIO\_TransferMode=SDIO\_TransferMode\_Block;
SDIO_DataConfig(&SDIO_DataInitStructure);
timeout=SDIO\_DATATIMEOUT;
if (DeviceMode == SD\_POLLING\_MODE)
{
INTX\_DISABLE();//关闭总中断(POLLING模式,严禁中断打断SDIO读写操作!!!)
while(!(SDIO->STA&((1<<10)|(1<<4)|(1<<1)|(1<<3)|(1<<9))))//数据块发送成功/下溢/CRC/超时/起始位错误
{
if(SDIO\_GetFlagStatus(SDIO\_FLAG\_TXFIFOHE) != RESET) //发送区半空,表示至少存了8个字
{
if((tlen-bytestransferred)<SD\_HALFFIFOBYTES)//不够32字节了
{
restwords=((tlen-bytestransferred)%4==0)?((tlen-bytestransferred)/4):((tlen-bytestransferred)/4+1);
for(count=0;count<restwords;count++,tempbuff++,bytestransferred+=4)
{
SDIO->FIFO=\*tempbuff;
}
}else
{
for(count=0;count<8;count++)
{
SDIO->FIFO=\*(tempbuff+count);
}
tempbuff+=8;
bytestransferred+=32;
}
timeout=0X3FFFFFFF; //写数据溢出时间
}else
{
if(timeout==0)return SD\_DATA\_TIMEOUT;
timeout--;
}
}
if(SDIO\_GetFlagStatus(SDIO\_FLAG\_DTIMEOUT) != RESET) //数据超时错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_DTIMEOUT); //清错误标志
return SD\_DATA\_TIMEOUT;
}else if(SDIO\_GetFlagStatus(SDIO\_FLAG\_DCRCFAIL) != RESET) //数据块CRC错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_DCRCFAIL); //清错误标志
return SD\_DATA\_CRC\_FAIL;
}else if(SDIO\_GetFlagStatus(SDIO\_FLAG\_TXUNDERR) != RESET) //接收fifo下溢错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_TXUNDERR); //清错误标志
return SD\_TX\_UNDERRUN;
}else if(SDIO\_GetFlagStatus(SDIO\_FLAG\_STBITERR) != RESET) //接收起始位错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_STBITERR);//清错误标志
return SD\_START\_BIT\_ERR;
}
INTX\_ENABLE();//开启总中断
SDIO\_ClearFlag(SDIO\_STATIC\_FLAGS);//清除所有标记
}else if(DeviceMode==SD\_DMA\_MODE)
{
TransferError=SD\_OK;
StopCondition=0; //单块写,不需要发送停止传输指令
TransferEnd=0; //传输结束标置位,在中断服务置1
SDIO->MASK|=(1<<1)|(1<<3)|(1<<8)|(1<<4)|(1<<9); //配置产生数据接收完成中断
SD\_DMA\_Config((u32\*)buf,blksize,DMA\_DIR\_MemoryToPeripheral); //SDIO DMA配置
SDIO->DCTRL|=1<<3; //SDIO DMA使能.
while(((DMA2->LISR&(1<<27))==RESET)&&timeout)timeout--;//等待传输完成
if(timeout==0)
{
SD\_Init(); //重新初始化SD卡,可以解决写入死机的问题
return SD\_DATA\_TIMEOUT; //超时
}
timeout=SDIO\_DATATIMEOUT;
while((TransferEnd==0)&&(TransferError==SD\_OK)&&timeout)timeout--;
if(timeout==0)return SD\_DATA\_TIMEOUT; //超时
if(TransferError!=SD\_OK)return TransferError;
}
SDIO\_ClearFlag(SDIO\_STATIC\_FLAGS);//清除所有标记
errorstatus=IsCardProgramming(&cardstate);
while((errorstatus==SD\_OK)&&((cardstate==SD\_CARD\_PROGRAMMING)||(cardstate==SD\_CARD\_RECEIVING)))
{
errorstatus=IsCardProgramming(&cardstate);
}
return errorstatus;
}
//SD卡写多个块
//buf:数据缓存区
//addr:写地址
//blksize:块大小
//nblks:要写入的块数
//返回值:错误状态
SD_Error SD_WriteMultiBlocks(u8 *buf,long long addr,u16 blksize,u32 nblks)
{
SD_Error errorstatus = SD_OK;
u8 power = 0, cardstate = 0;
u32 timeout=0,bytestransferred=0;
u32 count = 0, restwords = 0;
u32 tlen=nblks*blksize; //总长度(字节)
u32 *tempbuff = (u32*)buf;
if(buf==NULL)return SD_INVALID_PARAMETER; //参数错误
SDIO->DCTRL=0x0; //数据控制寄存器清零(关DMA)
SDIO\_DataInitStructure.SDIO\_DataBlockSize= 0; ; //清除DPSM状态机配置
SDIO\_DataInitStructure.SDIO\_DataLength= 0 ;
SDIO\_DataInitStructure.SDIO\_DataTimeOut=SD\_DATATIMEOUT ;
SDIO\_DataInitStructure.SDIO\_DPSM=SDIO\_DPSM\_Enable;
SDIO\_DataInitStructure.SDIO\_TransferDir=SDIO\_TransferDir\_ToCard;
SDIO\_DataInitStructure.SDIO\_TransferMode=SDIO\_TransferMode\_Block;
SDIO_DataConfig(&SDIO_DataInitStructure);
if(SDIO->RESP1&SD\_CARD\_LOCKED)return SD\_LOCK\_UNLOCK\_FAILED;//卡锁了
if(CardType==SDIO\_HIGH\_CAPACITY\_SD\_CARD)//大容量卡
{
blksize=512;
addr>>=9;
}
if((blksize>0)&&(blksize<=2048)&&((blksize&(blksize-1))==0))
{
power=convert\_from\_bytes\_to\_power\_of\_two(blksize);
SDIO\_CmdInitStructure.SDIO\_Argument = blksize; //发送CMD16+设置数据长度为blksize,短响应
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_SET\_BLOCKLEN;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short;
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure);
errorstatus=CmdResp1Error(SD\_CMD\_SET\_BLOCKLEN); //等待R1响应
if(errorstatus!=SD\_OK)return errorstatus; //响应错误
}else return SD\_INVALID\_PARAMETER;
if(nblks>1)
{
if(nblks\*blksize>SD\_MAX\_DATA\_LENGTH)return SD\_INVALID\_PARAMETER;
if((SDIO\_STD\_CAPACITY\_SD\_CARD\_V1\_1==CardType)||(SDIO\_STD\_CAPACITY\_SD\_CARD\_V2\_0==CardType)||(SDIO\_HIGH\_CAPACITY\_SD\_CARD==CardType))
{
//提高性能
SDIO\_CmdInitStructure.SDIO\_Argument = (u32)RCA<<16; //发送ACMD55,短响应
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_APP\_CMD;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short;
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure);
errorstatus=CmdResp1Error(SD\_CMD\_APP\_CMD); //等待R1响应
if(errorstatus!=SD\_OK)return errorstatus;
SDIO\_CmdInitStructure.SDIO\_Argument =nblks; //发送CMD23,设置块数量,短响应
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_SET\_BLOCK\_COUNT;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short;
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure);
errorstatus=CmdResp1Error(SD\_CMD\_SET\_BLOCK\_COUNT);//等待R1响应
if(errorstatus!=SD\_OK)return errorstatus;
}
SDIO\_CmdInitStructure.SDIO\_Argument =addr; //发送CMD25,多块写指令,短响应
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_WRITE\_MULT\_BLOCK;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short;
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure);
errorstatus=CmdResp1Error(SD\_CMD\_WRITE\_MULT\_BLOCK); //等待R1响应
if(errorstatus!=SD\_OK)return errorstatus;
SDIO\_DataInitStructure.SDIO\_DataBlockSize= power<<4; ; //blksize, 控制器到卡
SDIO\_DataInitStructure.SDIO\_DataLength= nblks\*blksize ;
SDIO\_DataInitStructure.SDIO\_DataTimeOut=SD\_DATATIMEOUT ;
SDIO\_DataInitStructure.SDIO\_DPSM=SDIO\_DPSM\_Enable;
SDIO\_DataInitStructure.SDIO\_TransferDir=SDIO\_TransferDir\_ToCard;
SDIO\_DataInitStructure.SDIO\_TransferMode=SDIO\_TransferMode\_Block;
SDIO\_DataConfig(&SDIO\_DataInitStructure);
if(DeviceMode==SD\_POLLING\_MODE)
{
timeout=SDIO\_DATATIMEOUT;
INTX\_DISABLE();//关闭总中断(POLLING模式,严禁中断打断SDIO读写操作!!!)
while(!(SDIO->STA&((1<<4)|(1<<1)|(1<<8)|(1<<3)|(1<<9))))//下溢/CRC/数据结束/超时/起始位错误
{
if(SDIO\_GetFlagStatus(SDIO\_FLAG\_TXFIFOHE) != RESET) //发送区半空,表示至少存了8字(32字节)
{
if((tlen-bytestransferred)<SD\_HALFFIFOBYTES)//不够32字节了
{
restwords=((tlen-bytestransferred)%4==0)?((tlen-bytestransferred)/4):((tlen-bytestransferred)/4+1);
for(count=0;count<restwords;count++,tempbuff++,bytestransferred+=4)
{
SDIO->FIFO=\*tempbuff;
}
}else //发送区半空,可以发送至少8字(32字节)数据
{
for(count=0;count<SD\_HALFFIFO;count++)
{
SDIO->FIFO=\*(tempbuff+count);
}
tempbuff+=SD\_HALFFIFO;
bytestransferred+=SD\_HALFFIFOBYTES;
}
timeout=0X3FFFFFFF; //写数据溢出时间
}else
{
if(timeout==0)return SD\_DATA\_TIMEOUT;
timeout--;
}
}
if(SDIO\_GetFlagStatus(SDIO\_FLAG\_DTIMEOUT) != RESET) //数据超时错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_DTIMEOUT); //清错误标志
return SD\_DATA\_TIMEOUT;
}else if(SDIO\_GetFlagStatus(SDIO\_FLAG\_DCRCFAIL) != RESET) //数据块CRC错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_DCRCFAIL); //清错误标志
return SD\_DATA\_CRC\_FAIL;
}else if(SDIO\_GetFlagStatus(SDIO\_FLAG\_TXUNDERR) != RESET) //接收fifo下溢错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_TXUNDERR); //清错误标志
return SD\_TX\_UNDERRUN;
}else if(SDIO\_GetFlagStatus(SDIO\_FLAG\_STBITERR) != RESET) //接收起始位错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_STBITERR);//清错误标志
return SD\_START\_BIT\_ERR;
}
if(SDIO\_GetFlagStatus(SDIO\_FLAG\_DATAEND) != RESET) //发送结束
{
if((SDIO\_STD\_CAPACITY\_SD\_CARD\_V1\_1==CardType)||(SDIO\_STD\_CAPACITY\_SD\_CARD\_V2\_0==CardType)||(SDIO\_HIGH\_CAPACITY\_SD\_CARD==CardType))
{
SDIO\_CmdInitStructure.SDIO\_Argument =0;//发送CMD12+结束传输
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_STOP\_TRANSMISSION;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short;
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure);
errorstatus=CmdResp1Error(SD\_CMD\_STOP\_TRANSMISSION);//等待R1响应
if(errorstatus!=SD\_OK)return errorstatus;
}
}
INTX\_ENABLE();//开启总中断
SDIO\_ClearFlag(SDIO\_STATIC\_FLAGS);//清除所有标记
}else if(DeviceMode==SD\_DMA\_MODE)
{
TransferError=SD\_OK;
StopCondition=1; //多块写,需要发送停止传输指令
TransferEnd=0; //传输结束标置位,在中断服务置1
SDIO->MASK|=(1<<1)|(1<<3)|(1<<8)|(1<<4)|(1<<9); //配置产生数据接收完成中断
SD\_DMA\_Config((u32\*)buf,nblks\*blksize,DMA\_DIR\_MemoryToPeripheral); //SDIO DMA配置
SDIO->DCTRL|=1<<3; //SDIO DMA使能.
timeout=SDIO\_DATATIMEOUT;
while(((DMA2->LISR&(1<<27))==RESET)&&timeout)timeout--;//等待传输完成
if(timeout==0) //超时
{
SD\_Init(); //重新初始化SD卡,可以解决写入死机的问题
return SD\_DATA\_TIMEOUT; //超时
}
timeout=SDIO\_DATATIMEOUT;
while((TransferEnd==0)&&(TransferError==SD\_OK)&&timeout)timeout--;
if(timeout==0)return SD\_DATA\_TIMEOUT; //超时
if(TransferError!=SD\_OK)return TransferError;
}
}
SDIO\_ClearFlag(SDIO\_STATIC\_FLAGS);//清除所有标记
errorstatus=IsCardProgramming(&cardstate);
while((errorstatus==SD\_OK)&&((cardstate==SD\_CARD\_PROGRAMMING)||(cardstate==SD\_CARD\_RECEIVING)))
{
errorstatus=IsCardProgramming(&cardstate);
}
return errorstatus;
}
//SDIO中断服务函数
void SDIO_IRQHandler(void)
{
SD_ProcessIRQSrc();//处理所有SDIO相关中断
}
//SDIO中断处理函数
//处理SDIO传输过程中的各种中断事务
//返回值:错误代码
SD_Error SD_ProcessIRQSrc(void)
{
if(SDIO_GetFlagStatus(SDIO_FLAG_DATAEND) != RESET)//接收完成中断
{
if (StopCondition==1)
{
SDIO_CmdInitStructure.SDIO_Argument =0;//发送CMD12+结束传输
SDIO_CmdInitStructure.SDIO_CmdIndex = SD_CMD_STOP_TRANSMISSION;
SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short;
SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No;
SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable;
SDIO_SendCommand(&SDIO_CmdInitStructure);
TransferError=CmdResp1Error(SD\_CMD\_STOP\_TRANSMISSION);
}else TransferError = SD\_OK;
SDIO->ICR|=1<<8;//清除完成中断标记
SDIO->MASK&=~((1<<1)|(1<<3)|(1<<8)|(1<<14)|(1<<15)|(1<<4)|(1<<5)|(1<<9));//关闭相关中断
TransferEnd = 1;
return(TransferError);
}
if(SDIO\_GetFlagStatus(SDIO\_FLAG\_DCRCFAIL) != RESET)//数据CRC错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_DCRCFAIL); //清错误标志
SDIO->MASK&=~((1<<1)|(1<<3)|(1<<8)|(1<<14)|(1<<15)|(1<<4)|(1<<5)|(1<<9));//关闭相关中断
TransferError = SD\_DATA\_CRC\_FAIL;
return(SD\_DATA\_CRC\_FAIL);
}
if(SDIO\_GetFlagStatus(SDIO\_FLAG\_DTIMEOUT) != RESET)//数据超时错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_DTIMEOUT); //清中断标志
SDIO->MASK&=~((1<<1)|(1<<3)|(1<<8)|(1<<14)|(1<<15)|(1<<4)|(1<<5)|(1<<9));//关闭相关中断
TransferError = SD\_DATA\_TIMEOUT;
return(SD\_DATA\_TIMEOUT);
}
if(SDIO\_GetFlagStatus(SDIO\_FLAG\_RXOVERR) != RESET)//FIFO上溢错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_RXOVERR); //清中断标志
SDIO->MASK&=~((1<<1)|(1<<3)|(1<<8)|(1<<14)|(1<<15)|(1<<4)|(1<<5)|(1<<9));//关闭相关中断
TransferError = SD\_RX\_OVERRUN;
return(SD\_RX\_OVERRUN);
}
if(SDIO\_GetFlagStatus(SDIO\_FLAG\_TXUNDERR) != RESET)//FIFO下溢错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_TXUNDERR); //清中断标志
SDIO->MASK&=~((1<<1)|(1<<3)|(1<<8)|(1<<14)|(1<<15)|(1<<4)|(1<<5)|(1<<9));//关闭相关中断
TransferError = SD\_TX\_UNDERRUN;
return(SD\_TX\_UNDERRUN);
}
if(SDIO\_GetFlagStatus(SDIO\_FLAG\_STBITERR) != RESET)//起始位错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_STBITERR); //清中断标志
SDIO->MASK&=~((1<<1)|(1<<3)|(1<<8)|(1<<14)|(1<<15)|(1<<4)|(1<<5)|(1<<9));//关闭相关中断
TransferError = SD\_START\_BIT\_ERR;
return(SD\_START\_BIT\_ERR);
}
return(SD\_OK);
}
//检查CMD0的执行状态
//返回值:sd卡错误码
SD_Error CmdError(void)
{
SD_Error errorstatus = SD_OK;
u32 timeout=SDIO_CMD0TIMEOUT;
while(timeout--)
{
if(SDIO_GetFlagStatus(SDIO_FLAG_CMDSENT) != RESET)break; //命令已发送(无需响应)
}
if(timeout==0)return SD_CMD_RSP_TIMEOUT;
SDIO_ClearFlag(SDIO_STATIC_FLAGS);//清除所有标记
return errorstatus;
}
//检查R7响应的错误状态
//返回值:sd卡错误码
SD_Error CmdResp7Error(void)
{
SD_Error errorstatus=SD_OK;
u32 status;
u32 timeout=SDIO_CMD0TIMEOUT;
while(timeout--)
{
status=SDIO->STA;
if(status&((1<<0)|(1<<2)|(1<<6)))break;//CRC错误/命令响应超时/已经收到响应(CRC校验成功)
}
if((timeout==0)||(status&(1<<2))) //响应超时
{
errorstatus=SD_CMD_RSP_TIMEOUT; //当前卡不是2.0兼容卡,或者不支持设定的电压范围
SDIO_ClearFlag(SDIO_FLAG_CTIMEOUT); //清除命令响应超时标志
return errorstatus;
}
if(status&1<<6) //成功接收到响应
{
errorstatus=SD_OK;
SDIO_ClearFlag(SDIO_FLAG_CMDREND); //清除响应标志
}
return errorstatus;
}
//检查R1响应的错误状态
//cmd:当前命令
//返回值:sd卡错误码
SD_Error CmdResp1Error(u8 cmd)
{
u32 status;
while(1)
{
status=SDIO->STA;
if(status&((1<<0)|(1<<2)|(1<<6)))break;//CRC错误/命令响应超时/已经收到响应(CRC校验成功)
}
if(SDIO_GetFlagStatus(SDIO_FLAG_CTIMEOUT) != RESET) //响应超时
{
SDIO_ClearFlag(SDIO_FLAG_CTIMEOUT); //清除命令响应超时标志
return SD_CMD_RSP_TIMEOUT;
}
if(SDIO_GetFlagStatus(SDIO_FLAG_CCRCFAIL) != RESET) //CRC错误
{
SDIO_ClearFlag(SDIO_FLAG_CCRCFAIL); //清除标志
return SD_CMD_CRC_FAIL;
}
if(SDIO->RESPCMD!=cmd)return SD_ILLEGAL_CMD;//命令不匹配
SDIO_ClearFlag(SDIO_STATIC_FLAGS);//清除所有标记
return (SD_Error)(SDIO->RESP1&SD_OCR_ERRORBITS);//返回卡响应
}
//检查R3响应的错误状态
//返回值:错误状态
SD_Error CmdResp3Error(void)
{
u32 status;
while(1)
{
status=SDIO->STA;
if(status&((1<<0)|(1<<2)|(1<<6)))break;//CRC错误/命令响应超时/已经收到响应(CRC校验成功)
}
if(SDIO_GetFlagStatus(SDIO_FLAG_CTIMEOUT) != RESET) //响应超时
{
SDIO_ClearFlag(SDIO_FLAG_CTIMEOUT); //清除命令响应超时标志
return SD_CMD_RSP_TIMEOUT;
}
SDIO_ClearFlag(SDIO_STATIC_FLAGS);//清除所有标记
return SD_OK;
}
//检查R2响应的错误状态
//返回值:错误状态
SD_Error CmdResp2Error(void)
{
SD_Error errorstatus=SD_OK;
u32 status;
u32 timeout=SDIO_CMD0TIMEOUT;
while(timeout--)
{
status=SDIO->STA;
if(status&((1<<0)|(1<<2)|(1<<6)))break;//CRC错误/命令响应超时/已经收到响应(CRC校验成功)
}
if((timeout==0)||(status&(1<<2))) //响应超时
{
errorstatus=SD_CMD_RSP_TIMEOUT;
SDIO_ClearFlag(SDIO_FLAG_CTIMEOUT); //清除命令响应超时标志
return errorstatus;
}
if(SDIO_GetFlagStatus(SDIO_FLAG_CCRCFAIL) != RESET) //CRC错误
{
errorstatus=SD_CMD_CRC_FAIL;
SDIO_ClearFlag(SDIO_FLAG_CCRCFAIL); //清除响应标志
}
SDIO_ClearFlag(SDIO_STATIC_FLAGS);//清除所有标记
return errorstatus;
}
//检查R6响应的错误状态
//cmd:之前发送的命令
//prca:卡返回的RCA地址
//返回值:错误状态
SD_Error CmdResp6Error(u8 cmd,u16*prca)
{
SD_Error errorstatus=SD_OK;
u32 status;
u32 rspr1;
while(1)
{
status=SDIO->STA;
if(status&((1<<0)|(1<<2)|(1<<6)))break;//CRC错误/命令响应超时/已经收到响应(CRC校验成功)
}
if(SDIO_GetFlagStatus(SDIO_FLAG_CTIMEOUT) != RESET) //响应超时
{
SDIO_ClearFlag(SDIO_FLAG_CTIMEOUT); //清除命令响应超时标志
return SD_CMD_RSP_TIMEOUT;
}
if(SDIO_GetFlagStatus(SDIO_FLAG_CCRCFAIL) != RESET) //CRC错误
{
SDIO_ClearFlag(SDIO_FLAG_CCRCFAIL); //清除响应标志
return SD_CMD_CRC_FAIL;
}
if(SDIO->RESPCMD!=cmd) //判断是否响应cmd命令
{
return SD_ILLEGAL_CMD;
}
SDIO_ClearFlag(SDIO_STATIC_FLAGS);//清除所有标记
rspr1=SDIO->RESP1; //得到响应
if(SD_ALLZERO==(rspr1&(SD_R6_GENERAL_UNKNOWN_ERROR|SD_R6_ILLEGAL_CMD|SD_R6_COM_CRC_FAILED)))
{
*prca=(u16)(rspr1>>16); //右移16位得到,rca
return errorstatus;
}
if(rspr1&SD_R6_GENERAL_UNKNOWN_ERROR)return SD_GENERAL_UNKNOWN_ERROR;
if(rspr1&SD_R6_ILLEGAL_CMD)return SD_ILLEGAL_CMD;
if(rspr1&SD_R6_COM_CRC_FAILED)return SD_COM_CRC_FAILED;
return errorstatus;
}
//SDIO使能宽总线模式
//enx:0,不使能;1,使能;
//返回值:错误状态
SD_Error SDEnWideBus(u8 enx)
{
SD_Error errorstatus = SD_OK;
u32 scr[2]={0,0};
u8 arg=0X00;
if(enx)arg=0X02;
else arg=0X00;
if(SDIO->RESP1&SD_CARD_LOCKED)return SD_LOCK_UNLOCK_FAILED;//SD卡处于LOCKED状态
errorstatus=FindSCR(RCA,scr); //得到SCR寄存器数据
if(errorstatus!=SD_OK)return errorstatus;
if((scr[1]&SD_WIDE_BUS_SUPPORT)!=SD_ALLZERO) //支持宽总线
{
SDIO_CmdInitStructure.SDIO_Argument = (uint32_t) RCA << 16;//发送CMD55+RCA,短响应
SDIO_CmdInitStructure.SDIO_CmdIndex = SD_CMD_APP_CMD;
SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short;
SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No;
SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable;
SDIO_SendCommand(&SDIO_CmdInitStructure);
errorstatus=CmdResp1Error(SD\_CMD\_APP\_CMD);
if(errorstatus!=SD\_OK)return errorstatus;
SDIO\_CmdInitStructure.SDIO\_Argument = arg;//发送ACMD6,短响应,参数:10,4位;00,1位.
SDIO\_CmdInitStructure.SDIO\_CmdIndex = SD\_CMD\_APP\_SD\_SET\_BUSWIDTH;
SDIO\_CmdInitStructure.SDIO\_Response = SDIO\_Response\_Short;
SDIO\_CmdInitStructure.SDIO\_Wait = SDIO\_Wait\_No;
SDIO\_CmdInitStructure.SDIO\_CPSM = SDIO\_CPSM\_Enable;
SDIO\_SendCommand(&SDIO\_CmdInitStructure);
errorstatus=CmdResp1Error(SD\_CMD\_APP\_SD\_SET\_BUSWIDTH);
return errorstatus;
}else return SD\_REQUEST\_NOT\_APPLICABLE; //不支持宽总线设置
}
//检查卡是否正在执行写操作
//pstatus:当前状态.
//返回值:错误代码
SD_Error IsCardProgramming(u8 *pstatus)
{
vu32 respR1 = 0, status = 0;
SDIO_CmdInitStructure.SDIO_Argument = (uint32_t) RCA << 16; //卡相对地址参数
SDIO_CmdInitStructure.SDIO_CmdIndex = SD_CMD_SEND_STATUS;//发送CMD13
SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short;
SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No;
SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable;
SDIO_SendCommand(&SDIO_CmdInitStructure);
status=SDIO->STA;
while(!(status&((1<<0)|(1<<6)|(1<<2))))status=SDIO->STA;//等待操作完成
if(SDIO\_GetFlagStatus(SDIO\_FLAG\_CCRCFAIL) != RESET) //CRC检测失败
{
SDIO\_ClearFlag(SDIO\_FLAG\_CCRCFAIL); //清除错误标记
return SD\_CMD\_CRC\_FAIL;
}
if(SDIO\_GetFlagStatus(SDIO\_FLAG\_CTIMEOUT) != RESET) //命令超时
{
SDIO\_ClearFlag(SDIO\_FLAG\_CTIMEOUT); //清除错误标记
return SD\_CMD\_RSP\_TIMEOUT;
}
if(SDIO->RESPCMD!=SD\_CMD\_SEND\_STATUS)return SD\_ILLEGAL\_CMD;
SDIO\_ClearFlag(SDIO\_STATIC\_FLAGS);//清除所有标记
respR1=SDIO->RESP1;
\*pstatus=(u8)((respR1>>9)&0x0000000F);
return SD\_OK;
}
//读取当前卡状态
//pcardstatus:卡状态
//返回值:错误代码
SD_Error SD_SendStatus(uint32_t *pcardstatus)
{
SD_Error errorstatus = SD_OK;
if(pcardstatus==NULL)
{
errorstatus=SD_INVALID_PARAMETER;
return errorstatus;
}
SDIO\_CmdInitStructure.SDIO\_Argument = (uint32\_t) RCA << 16;//发送CMD13,短响应
SDIO_CmdInitStructure.SDIO_CmdIndex = SD_CMD_SEND_STATUS;
SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short;
SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No;
SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable;
SDIO_SendCommand(&SDIO_CmdInitStructure);
errorstatus=CmdResp1Error(SD\_CMD\_SEND\_STATUS); //查询响应状态
if(errorstatus!=SD\_OK)return errorstatus;
\*pcardstatus=SDIO->RESP1;//读取响应值
return errorstatus;
}
//返回SD卡的状态
//返回值:SD卡状态
SDCardState SD_GetState(void)
{
u32 resp1=0;
if(SD_SendStatus(&resp1)!=SD_OK)return SD_CARD_ERROR;
else return (SDCardState)((resp1>>9) & 0x0F);
}
//查找SD卡的SCR寄存器值
//rca:卡相对地址
//pscr:数据缓存区(存储SCR内容)
//返回值:错误状态
SD_Error FindSCR(u16 rca,u32 *pscr)
{
u32 index = 0;
SD_Error errorstatus = SD_OK;
u32 tempscr[2]={0,0};
SDIO\_CmdInitStructure.SDIO\_Argument = (uint32\_t)8; //发送CMD16,短响应,设置Block Size为8字节
SDIO_CmdInitStructure.SDIO_CmdIndex = SD_CMD_SET_BLOCKLEN; // cmd16
SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short; //r1
SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No;
SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable;
SDIO_SendCommand(&SDIO_CmdInitStructure);
errorstatus=CmdResp1Error(SD\_CMD\_SET\_BLOCKLEN);
if(errorstatus!=SD\_OK)return errorstatus;
SDIO_CmdInitStructure.SDIO_Argument = (uint32_t) RCA << 16;
SDIO_CmdInitStructure.SDIO_CmdIndex = SD_CMD_APP_CMD;//发送CMD55,短响应
SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short;
SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No;
SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable;
SDIO_SendCommand(&SDIO_CmdInitStructure);
errorstatus=CmdResp1Error(SD\_CMD\_APP\_CMD);
if(errorstatus!=SD\_OK)return errorstatus;
SDIO_DataInitStructure.SDIO_DataTimeOut = SD_DATATIMEOUT;
SDIO_DataInitStructure.SDIO_DataLength = 8; //8个字节长度,block为8字节,SD卡到SDIO.
SDIO_DataInitStructure.SDIO_DataBlockSize = SDIO_DataBlockSize_8b ; //块大小8byte
SDIO_DataInitStructure.SDIO_TransferDir = SDIO_TransferDir_ToSDIO;
SDIO_DataInitStructure.SDIO_TransferMode = SDIO_TransferMode_Block;
SDIO_DataInitStructure.SDIO_DPSM = SDIO_DPSM_Enable;
SDIO_DataConfig(&SDIO_DataInitStructure);
SDIO_CmdInitStructure.SDIO_Argument = 0x0;
SDIO_CmdInitStructure.SDIO_CmdIndex = SD_CMD_SD_APP_SEND_SCR; //发送ACMD51,短响应,参数为0
SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short; //r1
SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No;
SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable;
SDIO_SendCommand(&SDIO_CmdInitStructure);
errorstatus=CmdResp1Error(SD\_CMD\_SD\_APP\_SEND\_SCR);
if(errorstatus!=SD\_OK)return errorstatus;
while(!(SDIO->STA&(SDIO\_FLAG\_RXOVERR|SDIO\_FLAG\_DCRCFAIL|SDIO\_FLAG\_DTIMEOUT|SDIO\_FLAG\_DBCKEND|SDIO\_FLAG\_STBITERR)))
{
if(SDIO\_GetFlagStatus(SDIO\_FLAG\_RXDAVL) != RESET)//接收FIFO数据可用
{
\*(tempscr+index)=SDIO->FIFO; //读取FIFO内容
index++;
if(index>=2)break;
}
}
if(SDIO\_GetFlagStatus(SDIO\_FLAG\_DTIMEOUT) != RESET) //数据超时错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_DTIMEOUT); //清错误标志
return SD\_DATA\_TIMEOUT;
}else if(SDIO\_GetFlagStatus(SDIO\_FLAG\_DCRCFAIL) != RESET) //数据块CRC错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_DCRCFAIL); //清错误标志
return SD\_DATA\_CRC\_FAIL;
}else if(SDIO\_GetFlagStatus(SDIO\_FLAG\_RXOVERR) != RESET) //接收fifo上溢错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_RXOVERR); //清错误标志
return SD\_RX\_OVERRUN;
}else if(SDIO\_GetFlagStatus(SDIO\_FLAG\_STBITERR) != RESET) //接收起始位错误
{
SDIO\_ClearFlag(SDIO\_FLAG\_STBITERR);//清错误标志
return SD\_START\_BIT\_ERR;
}
SDIO_ClearFlag(SDIO_STATIC_FLAGS);//清除所有标记
//把数据顺序按8位为单位倒过来.
*(pscr+1)=((tempscr[0]&SD_0TO7BITS)<<24)|((tempscr[0]&SD_8TO15BITS)<<8)|((tempscr[0]&SD_16TO23BITS)>>8)|((tempscr[0]&SD_24TO31BITS)>>24);
*(pscr)=((tempscr[1]&SD_0TO7BITS)<<24)|((tempscr[1]&SD_8TO15BITS)<<8)|((tempscr[1]&SD_16TO23BITS)>>8)|((tempscr[1]&SD_24TO31BITS)>>24);
return errorstatus;
}
//得到NumberOfBytes以2为底的指数.
//NumberOfBytes:字节数.
//返回值:以2为底的指数值
u8 convert_from_bytes_to_power_of_two(u16 NumberOfBytes)
{
u8 count=0;
while(NumberOfBytes!=1)
{
NumberOfBytes>>=1;
count++;
}
return count;
}
//配置SDIO DMA
//mbuf:存储器地址
//bufsize:传输数据量
//dir:方向;DMA_DIR_MemoryToPeripheral 存储器-->SDIO(写数据);DMA_DIR_PeripheralToMemory SDIO-->存储器(读数据);
void SD_DMA_Config(u32*mbuf,u32 bufsize,u32 dir)
{
DMA_InitTypeDef DMA_InitStructure;
while (DMA\_GetCmdStatus(DMA2\_Stream3) != DISABLE){}//等待DMA可配置
DMA_DeInit(DMA2_Stream3);//清空之前该stream3上的所有中断标志
DMA_InitStructure.DMA_Channel = DMA_Channel_4; //通道选择
DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)&SDIO->FIFO;//DMA外设地址
DMA_InitStructure.DMA_Memory0BaseAddr = (u32)mbuf;//DMA 存储器0地址
DMA_InitStructure.DMA_DIR = dir;//存储器到外设模式
DMA_InitStructure.DMA_BufferSize = 0;//数据传输量
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;//外设非增量模式
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;//存储器增量模式
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word;//外设数据长度:32位
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word;//存储器数据长度:32位
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;// 使用普通模式
DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh;//最高优先级
DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Enable; //FIFO使能
DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_Full;//全FIFO
DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_INC4;//外设突发4次传输
DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_INC4;//存储器突发4次传输
DMA_Init(DMA2_Stream3, &DMA_InitStructure);//初始化DMA Stream
DMA\_FlowControllerConfig(DMA2\_Stream3,DMA\_FlowCtrl\_Peripheral);//外设流控制
DMA_Cmd(DMA2_Stream3 ,ENABLE);//开启DMA传输
}
//读SD卡
//buf:读数据缓存区
//sector:扇区地址
//cnt:扇区个数
//返回值:错误状态;0,正常;其他,错误代码;
u8 SD_ReadDisk(u8*buf,u32 sector,u8 cnt)
{
u8 sta=SD_OK;
long long lsector=sector;
u8 n;
lsector<<=9;
if((u32)buf%4!=0)
{
for(n=0;n<cnt;n++)
{
sta=SD_ReadBlock(SDIO_DATA_BUFFER,lsector+512*n,512);//单个sector的读操作
memcpy(buf,SDIO_DATA_BUFFER,512);
buf+=512;
}
}else
{
if(cnt==1)sta=SD_ReadBlock(buf,lsector,512); //单个sector的读操作
else sta=SD_ReadMultiBlocks(buf,lsector,512,cnt);//多个sector
}
return sta;
}
//写SD卡
//buf:写数据缓存区
//sector:扇区地址
//cnt:扇区个数
//返回值:错误状态;0,正常;其他,错误代码;
u8 SD_WriteDisk(u8*buf,u32 sector,u8 cnt)
{
u8 sta=SD_OK;
u8 n;
long long lsector=sector;
lsector<<=9;
if((u32)buf%4!=0)
{
for(n=0;n<cnt;n++)
{
memcpy(SDIO_DATA_BUFFER,buf,512);
sta=SD_WriteBlock(SDIO_DATA_BUFFER,lsector+512*n,512);//单个sector的写操作
buf+=512;
}
}else
{
if(cnt==1)sta=SD_WriteBlock(buf,lsector,512); //单个sector的写操作
else sta=SD_WriteMultiBlocks(buf,lsector,512,cnt); //多个sector
}
return sta;
}
这是头文件《sdio_sdcard.h》
#ifndef __SDIO_SDCARD_H
#define __SDIO_SDCARD_H
#include "stm32f4xx.h"
//SDIO相关标志位,拷贝自:stm32f4xx_sdio.h
#define SDIO_FLAG_CCRCFAIL ((uint32_t)0x00000001)
#define SDIO_FLAG_DCRCFAIL ((uint32_t)0x00000002)
#define SDIO_FLAG_CTIMEOUT ((uint32_t)0x00000004)
#define SDIO_FLAG_DTIMEOUT ((uint32_t)0x00000008)
#define SDIO_FLAG_TXUNDERR ((uint32_t)0x00000010)
#define SDIO_FLAG_RXOVERR ((uint32_t)0x00000020)
#define SDIO_FLAG_CMDREND ((uint32_t)0x00000040)
#define SDIO_FLAG_CMDSENT ((uint32_t)0x00000080)
#define SDIO_FLAG_DATAEND ((uint32_t)0x00000100)
#define SDIO_FLAG_STBITERR ((uint32_t)0x00000200)
#define SDIO_FLAG_DBCKEND ((uint32_t)0x00000400)
#define SDIO_FLAG_CMDACT ((uint32_t)0x00000800)
#define SDIO_FLAG_TXACT ((uint32_t)0x00001000)
#define SDIO_FLAG_RXACT ((uint32_t)0x00002000)
#define SDIO_FLAG_TXFIFOHE ((uint32_t)0x00004000)
#define SDIO_FLAG_RXFIFOHF ((uint32_t)0x00008000)
#define SDIO_FLAG_TXFIFOF ((uint32_t)0x00010000)
#define SDIO_FLAG_RXFIFOF ((uint32_t)0x00020000)
#define SDIO_FLAG_TXFIFOE ((uint32_t)0x00040000)
#define SDIO_FLAG_RXFIFOE ((uint32_t)0x00080000)
#define SDIO_FLAG_TXDAVL ((uint32_t)0x00100000)
#define SDIO_FLAG_RXDAVL ((uint32_t)0x00200000)
#define SDIO_FLAG_SDIOIT ((uint32_t)0x00400000)
#define SDIO_FLAG_CEATAEND ((uint32_t)0x00800000)
//用户配置区
//SDIO时钟计算公式:SDIO_CK时钟=SDIOCLK/[clkdiv+2];其中,SDIOCLK固定为48Mhz
//使用DMA模式的时候,传输速率可以到48Mhz(bypass on时),不过如果你的卡不是高速
//卡,可能也会出错,出错就请降低时钟
#define SDIO_INIT_CLK_DIV 0x76 //SDIO初始化频率,最大400Kh
#define SDIO_TRANSFER_CLK_DIV 0x00 //SDIO传输频率,该值太小可能会导致读写文件出错
////////////////////////////////////////////////////////////////////////////////////////////////////
//SDIO工作模式定义,通过SD_SetDeviceMode函数设置.
#define SD_POLLING_MODE 0 //查询模式,该模式下,如果读写有问题,建议增大SDIO_TRANSFER_CLK_DIV的设置.
#define SD_DMA_MODE 1 //DMA模式,该模式下,如果读写有问题,建议增大SDIO_TRANSFER_CLK_DIV的设置.
//SDIO 各种错误枚举定义
typedef enum
{
//特殊错误定义
SD_CMD_CRC_FAIL = (1), /*!< Command response received (but CRC check failed) */
SD_DATA_CRC_FAIL = (2), /*!< Data bock sent/received (CRC check Failed) */
SD_CMD_RSP_TIMEOUT = (3), /*!< Command response timeout */
SD_DATA_TIMEOUT = (4), /*!< Data time out */
SD_TX_UNDERRUN = (5), /*!< Transmit FIFO under-run */
SD_RX_OVERRUN = (6), /*!< Receive FIFO over-run */
SD_START_BIT_ERR = (7), /*!< Start bit not detected on all data signals in widE bus mode */
SD_CMD_OUT_OF_RANGE = (8), /*!< CMD's argument was out of range.*/
SD_ADDR_MISALIGNED = (9), /*!< Misaligned address */
SD_BLOCK_LEN_ERR = (10), /*!< Transferred block length is not allowed for the card or the number of transferred bytes does not match the block length */
SD_ERASE_SEQ_ERR = (11), /*!< An error in the sequence of erase command occurs.*/
SD_BAD_ERASE_PARAM = (12), /*!< An Invalid selection for erase groups */
SD_WRITE_PROT_VIOLATION = (13), /*!< Attempt to program a write protect block */
SD_LOCK_UNLOCK_FAILED = (14), /*!< Sequence or password error has been detected in unlock command or if there was an attempt to access a locked card */
SD_COM_CRC_FAILED = (15), /*!< CRC check of the previous command failed */
SD_ILLEGAL_CMD = (16), /*!< Command is not legal for the card state */
SD_CARD_ECC_FAILED = (17), /*!< Card internal ECC was applied but failed to correct the data */
SD_CC_ERROR = (18), /*!< Internal card controller error */
SD_GENERAL_UNKNOWN_ERROR = (19), /*!< General or Unknown error */
SD_STREAM_READ_UNDERRUN = (20), /*!< The card could not sustain data transfer in stream read operation. */
SD_STREAM_WRITE_OVERRUN = (21), /*!< The card could not sustain data programming in stream mode */
SD_CID_CSD_OVERWRITE = (22), /*!< CID/CSD overwrite error */
SD_WP_ERASE_SKIP = (23), /*!< only partial address space was erased */
SD_CARD_ECC_DISABLED = (24), /*!< Command has been executed without using internal ECC */
SD_ERASE_RESET = (25), /*!< Erase sequence was cleared before executing because an out of erase sequence command was received */
SD_AKE_SEQ_ERROR = (26), /*!< Error in sequence of authentication. */
SD_INVALID_VOLTRANGE = (27),
SD_ADDR_OUT_OF_RANGE = (28),
SD_SWITCH_ERROR = (29),
SD_SDIO_DISABLED = (30),
SD_SDIO_FUNCTION_BUSY = (31),
SD_SDIO_FUNCTION_FAILED = (32),
SD_SDIO_UNKNOWN_FUNCTION = (33),
//标准错误定义
SD_INTERNAL_ERROR,
SD_NOT_CONFIGURED,
SD_REQUEST_PENDING,
SD_REQUEST_NOT_APPLICABLE,
SD_INVALID_PARAMETER,
SD_UNSUPPORTED_FEATURE,
SD_UNSUPPORTED_HW,
SD_ERROR,
SD_OK = 0
} SD_Error;
//SD卡CSD寄存器数据
typedef struct
{
u8 CSDStruct; /*!< CSD structure */
u8 SysSpecVersion; /*!< System specification version */
u8 Reserved1; /*!< Reserved */
u8 TAAC; /*!< Data read access-time 1 */
u8 NSAC; /*!< Data read access-time 2 in CLK cycles */
u8 MaxBusClkFrec; /*!< Max. bus clock frequency */
u16 CardComdClasses; /*!< Card command classes */
u8 RdBlockLen; /*!< Max. read data block length */
u8 PartBlockRead; /*!< Partial blocks for read allowed */
u8 WrBlockMisalign; /*!< Write block misalignment */
u8 RdBlockMisalign; /*!< Read block misalignment */
u8 DSRImpl; /*!< DSR implemented */
u8 Reserved2; /*!< Reserved */
u32 DeviceSize; /*!< Device Size */
u8 MaxRdCurrentVDDMin; /*!< Max. read current @ VDD min */
u8 MaxRdCurrentVDDMax; /*!< Max. read current @ VDD max */
u8 MaxWrCurrentVDDMin; /*!< Max. write current @ VDD min */
u8 MaxWrCurrentVDDMax; /*!< Max. write current @ VDD max */
u8 DeviceSizeMul; /*!< Device size multiplier */
u8 EraseGrSize; /*!< Erase group size */
u8 EraseGrMul; /*!< Erase group size multiplier */
u8 WrProtectGrSize; /*!< Write protect group size */
u8 WrProtectGrEnable; /*!< Write protect group enable */
u8 ManDeflECC; /*!< Manufacturer default ECC */
u8 WrSpeedFact; /*!< Write speed factor */
u8 MaxWrBlockLen; /*!< Max. write data block length */
u8 WriteBlockPaPartial; /*!< Partial blocks for write allowed */
u8 Reserved3; /*!< Reserded */
u8 ContentProtectAppli; /*!< Content protection application */
u8 FileFormatGrouop; /*!< File format group */
u8 CopyFlag; /*!< Copy flag (OTP) */
u8 PermWrProtect; /*!< Permanent write protection */
u8 TempWrProtect; /*!< Temporary write protection */
u8 FileFormat; /*!< File Format */
u8 ECC; /*!< ECC code */
u8 CSD_CRC; /*!< CSD CRC */
u8 Reserved4; /*!< always 1*/
} SD_CSD;
//SD卡CID寄存器数据
typedef struct
{
u8 ManufacturerID; /*!< ManufacturerID */
u16 OEM_AppliID; /*!< OEM/Application ID */
u32 ProdName1; /*!< Product Name part1 */
u8 ProdName2; /*!< Product Name part2*/
u8 ProdRev; /*!< Product Revision */
u32 ProdSN; /*!< Product Serial Number */
u8 Reserved1; /*!< Reserved1 */
u16 ManufactDate; /*!< Manufacturing Date */
u8 CID_CRC; /*!< CID CRC */
u8 Reserved2; /*!< always 1 */
} SD_CID;
//SD卡状态
typedef enum
{
SD_CARD_READY = ((uint32_t)0x00000001),
SD_CARD_IDENTIFICATION = ((uint32_t)0x00000002),
SD_CARD_STANDBY = ((uint32_t)0x00000003),
SD_CARD_TRANSFER = ((uint32_t)0x00000004),
SD_CARD_SENDING = ((uint32_t)0x00000005),
SD_CARD_RECEIVING = ((uint32_t)0x00000006),
SD_CARD_PROGRAMMING = ((uint32_t)0x00000007),
SD_CARD_DISCONNECTED = ((uint32_t)0x00000008),
SD_CARD_ERROR = ((uint32_t)0x000000FF)
}SDCardState;
//SD卡信息,包括CSD,CID等数据
typedef struct
{
SD_CSD SD_csd;
SD_CID SD_cid;
long long CardCapacity; //SD卡容量,单位:字节,最大支持2^64字节大小的卡.
u32 CardBlockSize; //SD卡块大小
u16 RCA; //卡相对地址
u8 CardType; //卡类型
} SD_CardInfo;
extern SD_CardInfo SDCardInfo;//SD卡信息
////////////////////////////////////////////////////////////////////////////////////////////////////
//SDIO 指令集
#define SD_CMD_GO_IDLE_STATE ((u8)0)
#define SD_CMD_SEND_OP_COND ((u8)1)
#define SD_CMD_ALL_SEND_CID ((u8)2)
#define SD_CMD_SET_REL_ADDR ((u8)3) /*!< SDIO_SEND_REL_ADDR for SD Card */
#define SD_CMD_SET_DSR ((u8)4)
#define SD_CMD_SDIO_SEN_OP_COND ((u8)5)
#define SD_CMD_HS_SWITCH ((u8)6)
#define SD_CMD_SEL_DESEL_CARD ((u8)7)
#define SD_CMD_HS_SEND_EXT_CSD ((u8)8)
#define SD_CMD_SEND_CSD ((u8)9)
#define SD_CMD_SEND_CID ((u8)10)
#define SD_CMD_READ_DAT_UNTIL_STOP ((u8)11) /*!< SD Card doesn't support it */
#define SD_CMD_STOP_TRANSMISSION ((u8)12)
#define SD_CMD_SEND_STATUS ((u8)13)
#define SD_CMD_HS_BUSTEST_READ ((u8)14)
#define SD_CMD_GO_INACTIVE_STATE ((u8)15)
#define SD_CMD_SET_BLOCKLEN ((u8)16)
#define SD_CMD_READ_SINGLE_BLOCK ((u8)17)
#define SD_CMD_READ_MULT_BLOCK ((u8)18)
#define SD_CMD_HS_BUSTEST_WRITE ((u8)19)
#define SD_CMD_WRITE_DAT_UNTIL_STOP ((u8)20)
#define SD_CMD_SET_BLOCK_COUNT ((u8)23)
#define SD_CMD_WRITE_SINGLE_BLOCK ((u8)24)
#define SD_CMD_WRITE_MULT_BLOCK ((u8)25)
#define SD_CMD_PROG_CID ((u8)26)
#define SD_CMD_PROG_CSD ((u8)27)
#define SD_CMD_SET_WRITE_PROT ((u8)28)
#define SD_CMD_CLR_WRITE_PROT ((u8)29)
#define SD_CMD_SEND_WRITE_PROT ((u8)30)
#define SD_CMD_SD_ERASE_GRP_START ((u8)32) /*!< To set the address of the first write
block to be erased. (For SD card only) */
#define SD_CMD_SD_ERASE_GRP_END ((u8)33) /*!< To set the address of the last write block of the
continuous range to be erased. (For SD card only) */
#define SD_CMD_ERASE_GRP_START ((u8)35) /*!< To set the address of the first write block to be erased.
(For MMC card only spec 3.31) */
#define SD_CMD_ERASE_GRP_END ((u8)36) /*!< To set the address of the last write block of the
continuous range to be erased. (For MMC card only spec 3.31) */
#define SD_CMD_ERASE ((u8)38)
#define SD_CMD_FAST_IO ((u8)39) /*!< SD Card doesn't support it */
#define SD_CMD_GO_IRQ_STATE ((u8)40) /*!< SD Card doesn't support it */
#define SD_CMD_LOCK_UNLOCK ((u8)42)
#define SD_CMD_APP_CMD ((u8)55)
#define SD_CMD_GEN_CMD ((u8)56)
#define SD_CMD_NO_CMD ((u8)64)
/**
* @brief Following commands are SD Card Specific commands.
* SDIO_APP_CMD :CMD55 should be sent before sending these commands.
*/
#define SD_CMD_APP_SD_SET_BUSWIDTH ((u8)6) /*!< For SD Card only */
#define SD_CMD_SD_APP_STAUS ((u8)13) /*!< For SD Card only */
#define SD_CMD_SD_APP_SEND_NUM_WRITE_BLOCKS ((u8)22) /*!< For SD Card only */
#define SD_CMD_SD_APP_OP_COND ((u8)41) /*!< For SD Card only */
#define SD_CMD_SD_APP_SET_CLR_CARD_DETECT ((u8)42) /*!< For SD Card only */
#define SD_CMD_SD_APP_SEND_SCR ((u8)51) /*!< For SD Card only */
#define SD_CMD_SDIO_RW_DIRECT ((u8)52) /*!< For SD I/O Card only */
#define SD_CMD_SDIO_RW_EXTENDED ((u8)53) /*!< For SD I/O Card only */
/**
* @brief Following commands are SD Card Specific security commands.
* SDIO_APP_CMD should be sent before sending these commands.
*/
#define SD_CMD_SD_APP_GET_MKB ((u8)43) /*!< For SD Card only */
#define SD_CMD_SD_APP_GET_MID ((u8)44) /*!< For SD Card only */
#define SD_CMD_SD_APP_SET_CER_RN1 ((u8)45) /*!< For SD Card only */
#define SD_CMD_SD_APP_GET_CER_RN2 ((u8)46) /*!< For SD Card only */
#define SD_CMD_SD_APP_SET_CER_RES2 ((u8)47) /*!< For SD Card only */
#define SD_CMD_SD_APP_GET_CER_RES1 ((u8)48) /*!< For SD Card only */
#define SD_CMD_SD_APP_SECURE_READ_MULTIPLE_BLOCK ((u8)18) /*!< For SD Card only */
#define SD_CMD_SD_APP_SECURE_WRITE_MULTIPLE_BLOCK ((u8)25) /*!< For SD Card only */
#define SD_CMD_SD_APP_SECURE_ERASE ((u8)38) /*!< For SD Card only */
#define SD_CMD_SD_APP_CHANGE_SECURE_AREA ((u8)49) /*!< For SD Card only */
#define SD_CMD_SD_APP_SECURE_WRITE_MKB ((u8)48) /*!< For SD Card only */
//支持的SD卡定义
#define SDIO_STD_CAPACITY_SD_CARD_V1_1 ((u32)0x00000000)
#define SDIO_STD_CAPACITY_SD_CARD_V2_0 ((u32)0x00000001)
#define SDIO_HIGH_CAPACITY_SD_CARD ((u32)0x00000002)
#define SDIO_MULTIMEDIA_CARD ((u32)0x00000003)
#define SDIO_SECURE_DIGITAL_IO_CARD ((u32)0x00000004)
#define SDIO_HIGH_SPEED_MULTIMEDIA_CARD ((u32)0x00000005)
#define SDIO_SECURE_DIGITAL_IO_COMBO_CARD ((u32)0x00000006)
#define SDIO_HIGH_CAPACITY_MMC_CARD ((u32)0x00000007)
//SDIO相关参数定义
#define NULL 0
#define SDIO_STATIC_FLAGS ((u32)0x000005FF)
#define SDIO_CMD0TIMEOUT ((u32)0x00010000)
#define SDIO_DATATIMEOUT ((u32)0xFFFFFFFF)
#define SDIO_FIFO_Address ((u32)0x40018080)
//Mask for errors Card Status R1 (OCR Register)
#define SD_OCR_ADDR_OUT_OF_RANGE ((u32)0x80000000)
#define SD_OCR_ADDR_MISALIGNED ((u32)0x40000000)
#define SD_OCR_BLOCK_LEN_ERR ((u32)0x20000000)
#define SD_OCR_ERASE_SEQ_ERR ((u32)0x10000000)
#define SD_OCR_BAD_ERASE_PARAM ((u32)0x08000000)
#define SD_OCR_WRITE_PROT_VIOLATION ((u32)0x04000000)
#define SD_OCR_LOCK_UNLOCK_FAILED ((u32)0x01000000)
#define SD_OCR_COM_CRC_FAILED ((u32)0x00800000)
#define SD_OCR_ILLEGAL_CMD ((u32)0x00400000)
#define SD_OCR_CARD_ECC_FAILED ((u32)0x00200000)
#define SD_OCR_CC_ERROR ((u32)0x00100000)
#define SD_OCR_GENERAL_UNKNOWN_ERROR ((u32)0x00080000)
#define SD_OCR_STREAM_READ_UNDERRUN ((u32)0x00040000)
#define SD_OCR_STREAM_WRITE_OVERRUN ((u32)0x00020000)
#define SD_OCR_CID_CSD_OVERWRIETE ((u32)0x00010000)
#define SD_OCR_WP_ERASE_SKIP ((u32)0x00008000)
#define SD_OCR_CARD_ECC_DISABLED ((u32)0x00004000)
#define SD_OCR_ERASE_RESET ((u32)0x00002000)
#define SD_OCR_AKE_SEQ_ERROR ((u32)0x00000008)
#define SD_OCR_ERRORBITS ((u32)0xFDFFE008)
//Masks for R6 Response
#define SD_R6_GENERAL_UNKNOWN_ERROR ((u32)0x00002000)
#define SD_R6_ILLEGAL_CMD ((u32)0x00004000)
#define SD_R6_COM_CRC_FAILED ((u32)0x00008000)
#define SD_VOLTAGE_WINDOW_SD ((u32)0x80100000)
#define SD_HIGH_CAPACITY ((u32)0x40000000)
#define SD_STD_CAPACITY ((u32)0x00000000)
#define SD_CHECK_PATTERN ((u32)0x000001AA)
#define SD_VOLTAGE_WINDOW_MMC ((u32)0x80FF8000)
#define SD_MAX_VOLT_TRIAL ((u32)0x0000FFFF)
#define SD_ALLZERO ((u32)0x00000000)
#define SD_WIDE_BUS_SUPPORT ((u32)0x00040000)
#define SD_SINGLE_BUS_SUPPORT ((u32)0x00010000)
#define SD_CARD_LOCKED ((u32)0x02000000)
#define SD_CARD_PROGRAMMING ((u32)0x00000007)
#define SD_CARD_RECEIVING ((u32)0x00000006)
#define SD_DATATIMEOUT ((u32)0xFFFFFFFF)
#define SD_0TO7BITS ((u32)0x000000FF)
#define SD_8TO15BITS ((u32)0x0000FF00)
#define SD_16TO23BITS ((u32)0x00FF0000)
#define SD_24TO31BITS ((u32)0xFF000000)
#define SD_MAX_DATA_LENGTH ((u32)0x01FFFFFF)
#define SD_HALFFIFO ((u32)0x00000008)
#define SD_HALFFIFOBYTES ((u32)0x00000020)
//Command Class Supported
#define SD_CCCC_LOCK_UNLOCK ((u32)0x00000080)
#define SD_CCCC_WRITE_PROT ((u32)0x00000040)
#define SD_CCCC_ERASE ((u32)0x00000020)
//CMD8指令
#define SDIO_SEND_IF_COND ((u32)0x00000008)
////////////////////////////////////////////////////////////////////////////////////////////////////
//相关函数定义
SD_Error SD_Init(void);
void SDIO_Clock_Set(u8 clkdiv);
SD_Error SD_PowerON(void);
SD_Error SD_PowerOFF(void);
SD_Error SD_InitializeCards(void);
SD_Error SD_GetCardInfo(SD_CardInfo *cardinfo);
SD_Error SD_EnableWideBusOperation(u32 wmode);
SD_Error SD_SetDeviceMode(u32 mode);
SD_Error SD_SelectDeselect(u32 addr);
SD_Error SD_SendStatus(uint32_t *pcardstatus);
SDCardState SD_GetState(void);
SD_Error SD_ReadBlock(u8 *buf,long long addr,u16 blksize);
SD_Error SD_ReadMultiBlocks(u8 *buf,long long addr,u16 blksize,u32 nblks);
SD_Error SD_WriteBlock(u8 *buf,long long addr, u16 blksize);
SD_Error SD_WriteMultiBlocks(u8 *buf,long long addr,u16 blksize,u32 nblks);
SD_Error SD_ProcessIRQSrc(void);
void SD_DMA_Config(u32*mbuf,u32 bufsize,u32 dir);
//void SD_DMA_Config(u32*mbuf,u32 bufsize,u8 dir);
u8 SD_ReadDisk(u8*buf,u32 sector,u8 cnt); //读SD卡,fatfs/usb调用
u8 SD_WriteDisk(u8*buf,u32 sector,u8 cnt); //写SD卡,fatfs/usb调用
#endif
手机扫一扫
移动阅读更方便
你可能感兴趣的文章