32位Windows采用虚拟内存技术使每个进程虚拟4G内存,在逻辑上实现了对进程之间数据代码的分离与保护。那么相应的进程之间的通信也就有必要整理掌握一下。
Windows进程间通讯的方法有很多:管道、邮件槽、剪切板、共享内存、消息、套接字、RPC、DDE等。
但是他们大部分拥有一个共同的本质:利用Windows操作系统高2GB内核共享空间进行数据传递的桥梁,所以他们都是内核对象!
所以他们大部分都要遵循:A创建对象-->A写入数据-->B打开A创建的对象-->B读入数据的规则
下面着重通过一些代码Demo来加深下对进程间通信的理解
0X01
命名管道
进程A代码
#define READ_PIPE L"\\\\.\\pipe\\ReadPipe"
#define WRITE_PIPE L"\\\\.\\pipe\\WritePipe" // 管道命名
typedef struct _USER_CONTEXT_
{
HANDLE hPipe;
HANDLE hEvent;
}USER_CONTEXT,*PUSER_CONTEXT;
USER_CONTEXT Context[2] = {0};
HANDLE hThread[2] = {0};
BOOL WritePipe();
BOOL ReadPipe();
BOOL bOk = FALSE;
DWORD WINAPI WritePipeThread(LPVOID LPParam);
DWORD WINAPI ReadPipeThread(LPVOID LPParam);
int _tmain(int argc, TCHAR* argv[], TCHAR* envp[])
{
int nRetCode = 0;
HANDLE hPipe = NULL;
if (WritePipe()==FALSE)
{
return -1;
}
if (ReadPipe()==FALSE)
{
return -1;
}
int iIndex = 0;
while (TRUE)
{
if (bOk==TRUE)
{
SetEvent(Context\[0\].hEvent);
SetEvent(Context\[1\].hEvent);
Sleep(1);
}
iIndex = WaitForMultipleObjects(2,hThread,TRUE,5000);
if (iIndex==WAIT\_TIMEOUT)
{
continue;
}
else
{
break;
}
}
int i = 0;
for (i=0;i<2;i++)
{
CloseHandle(Context\[i\].hEvent);
CloseHandle(Context\[i\].hPipe);
}
CloseHandle(hThread\[0\]);
CloseHandle(hThread\[1\]);
cout<<"Exit"<<endl;
return nRetCode;
}
BOOL WritePipe()
{
HANDLE hWritePipe = NULL;
hWritePipe = CreateNamedPipe(
WRITE\_PIPE,
PIPE\_ACCESS\_DUPLEX,
PIPE\_TYPE\_MESSAGE |
PIPE\_READMODE\_MESSAGE |
PIPE\_WAIT,
PIPE\_UNLIMITED\_INSTANCES,
MAX\_PATH,
MAX\_PATH,
0,
NULL);
if (hWritePipe==INVALID\_HANDLE\_VALUE)
{
return FALSE;
}
HANDLE hEvent = CreateEvent(NULL,FALSE,FALSE,NULL);
Context\[0\].hEvent = hEvent;
Context\[0\].hPipe = hWritePipe;
hThread\[0\] = CreateThread(NULL,0,WritePipeThread,NULL,0,NULL);
return TRUE;
}
BOOL ReadPipe()
{
HANDLE hReadPipe = NULL;
hReadPipe = CreateNamedPipe(
READ\_PIPE,
PIPE\_ACCESS\_DUPLEX,
PIPE\_TYPE\_MESSAGE |
PIPE\_READMODE\_MESSAGE |
PIPE\_WAIT,
PIPE\_UNLIMITED\_INSTANCES,
MAX\_PATH,
MAX\_PATH,
0,
NULL);
if (hReadPipe==INVALID\_HANDLE\_VALUE)
{
return FALSE;
}
HANDLE hEvent = CreateEvent(NULL,FALSE,FALSE,NULL);
Context\[1\].hEvent = hEvent;
Context\[1\].hPipe = hReadPipe;
hThread\[1\] = CreateThread(NULL,0,ReadPipeThread,NULL,0,NULL);
return TRUE;
}
DWORD WINAPI ReadPipeThread(LPVOID LPParam)
{
HANDLE hEvent = Context\[1\].hEvent;
HANDLE hReadPipe = Context\[1\].hPipe;
DWORD dwReturn = 0;
char szBuffer\[MAX\_PATH\] = {0};
int iIndex = 0;
while (TRUE)
{
iIndex = WaitForSingleObject(hEvent,30);
iIndex = iIndex-WAIT\_OBJECT\_0;
if (iIndex==WAIT\_FAILED||iIndex==0)
{
break;
}
if (ReadFile(hReadPipe,szBuffer,MAX\_PATH,&dwReturn,NULL))
{
szBuffer\[dwReturn\] = '\\0';
cout<<szBuffer<<endl;
}
else
{
if (GetLastError()==ERROR\_INVALID\_HANDLE)
{
break;
}
}
}
return 0;
}
DWORD WINAPI WritePipeThread(LPVOID LPParam)
{
HANDLE hEvent = Context[0].hEvent;
HANDLE hWritePipe = Context[0].hPipe;
DWORD dwReturn = 0;
char szBuffer\[MAX\_PATH\] = {0};
int iIndex = 0;
while (TRUE)
{
iIndex = WaitForSingleObject(hEvent,30);
iIndex = iIndex-WAIT\_OBJECT\_0;
if (iIndex==WAIT\_FAILED||iIndex==0)
{
break;
}
cin>>szBuffer;
if (WriteFile(hWritePipe,szBuffer,strlen(szBuffer),&dwReturn,NULL))
{
}
else
{
if (GetLastError()==ERROR\_INVALID\_HANDLE)
{
break;
}
}
}
return 0;
}
进程B代码
#define WRITE_PIPE L"\\\\.\\pipe\\ReadPipe"
#define READ_PIPE L"\\\\.\\pipe\\WritePipe"
HANDLE hThread[2] = {0};
DWORD WINAPI ReadPipeThread(LPARAM LPParam);
DWORD WINAPI WritePipeThread(LPARAM LPParam);
int _tmain(int argc, TCHAR* argv[], TCHAR* envp[])
{
HANDLE hReadPipe = NULL;
HANDLE hWritePipe = NULL;
hThread\[0\] = CreateThread(NULL,0,(LPTHREAD\_START\_ROUTINE)ReadPipeThread,NULL,0,NULL);
hThread\[1\] = CreateThread(NULL,0,(LPTHREAD\_START\_ROUTINE)WritePipeThread,NULL,0,NULL);
WaitForMultipleObjects(2,hThread,TRUE,INFINITE);
CloseHandle(hReadPipe);
CloseHandle(hWritePipe);
CloseHandle(hThread\[0\]);
CloseHandle(hThread\[1\]);
cout<<"Exit"<<endl;
return -1;
}
DWORD WINAPI WritePipeThread(LPARAM LPParam)
{
HANDLE hWritePipe = NULL;
char szBuffer[MAX_PATH] = {0};
DWORD dwReturn = 0;
while(TRUE)
{
hWritePipe = CreateFile(WRITE\_PIPE,GENERIC\_READ | GENERIC\_WRITE,
FILE\_SHARE\_READ | FILE\_SHARE\_WRITE,
NULL,OPEN\_EXISTING,0,NULL);
if (hWritePipe==INVALID\_HANDLE\_VALUE)
{
continue;
}
break;
}
while (TRUE)
{
cin>>szBuffer;
if (WriteFile(hWritePipe,szBuffer,MAX\_PATH,&dwReturn,NULL))
{
}
else
{
if (GetLastError()==ERROR\_NO\_DATA)
{
cout<<"Write Failed"<<endl;
break;
}
}
}
return 0;
}
DWORD WINAPI ReadPipeThread(LPARAM LPParam)
{
HANDLE hReadPipe = NULL;
char szBuffer\[MAX\_PATH\] = {0};
DWORD dwReturn = 0;
while(TRUE)
{
hReadPipe = CreateFile(READ\_PIPE,GENERIC\_READ | GENERIC\_WRITE,
FILE\_SHARE\_READ | FILE\_SHARE\_WRITE,
NULL,OPEN\_EXISTING,0,NULL);
if (hReadPipe==INVALID\_HANDLE\_VALUE)
{
continue;
}
break;
}
while (TRUE)
{
if (ReadFile(hReadPipe,szBuffer,MAX\_PATH,&dwReturn,NULL))
{
szBuffer\[dwReturn\] = '\\0';
cout<<szBuffer;
}
else
{
cout<<"Read Failed"<<endl;
break;
}
}
return 0;
}
*其中进程A创建了管道内核对象,以及用于读写管道的双线程。B进程通过对象名打开了A创建的内核对象,同时也创建了双线程进行命名管道的读与写。
对于管道需要多说的是有一种管道是匿名管道,也就是不需要创建对象管道的名字。那么其他进程又是如何知道这个管道对象,从而实现对信息的传递的呢?
原来它是通过内核对象的可继承性进行的,也就是说匿名管道只能作用于父子进程之间,在父进程创建子进程的时候通过对CreateProcess函数中传参,即可让子进程获得父进程的内核对象句柄。
具体实现细节,请参考《Windows核心编程》内核对象一章。
0X02
邮件槽
进程A代码
#define MAIL_SLOT_NAME L"\\\\.\\mailslot\\Name"
HANDLE hReadMailSlot = INVALID_HANDLE_VALUE;
DWORD WINAPI ReadMail();
int _tmain(int argc, TCHAR* argv[], TCHAR* envp[])
{
int nRetCode = 0;
HANDLE hReadThread = CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)ReadMail,NULL,0,NULL);
Sleep(INFINITE);
if (hReadMailSlot!=INVALID\_HANDLE\_VALUE)
{
CloseHandle(hReadMailSlot);
}
Sleep(10);
return nRetCode;
}
DWORD WINAPI ReadMail()
{
hReadMailSlot = CreateMailslot(MAIL\_SLOT\_NAME,0,0,NULL);
if (hReadMailSlot==INVALID\_HANDLE\_VALUE)
{
return -1;
}
//查看油槽的信息
DWORD cbMessage = 0;
DWORD cMessage = 0;
BOOL bOk = FALSE;
char\* szBuffer = NULL;
DWORD dwReturn = 0;
while (TRUE)
{
bOk = GetMailslotInfo(hReadMailSlot,NULL,&cbMessage,&cMessage,NULL);
if (bOk==FALSE)
{
break;
}
if (cMessage==0)
{
continue;
}
else
{
if (szBuffer!=NULL)
{
free(szBuffer);
szBuffer = NULL;
}
szBuffer = (char\*)malloc(sizeof(char)\*cbMessage+1);
if (ReadFile(hReadMailSlot,
szBuffer,
cbMessage,
&dwReturn,
NULL)==TRUE)
{
szBuffer\[dwReturn\] = '\\0';
if (strcmp(szBuffer,"Exit")==0)
{
break;
}
cout<<szBuffer<<endl;
}
}
}
cout<<"ReadThread Exit"<<endl;
}
进程B代码
#define MAIL_SLOT_NAME L"\\\\.\\mailslot\\Name"
int _tmain(int argc, TCHAR* argv[], TCHAR* envp[])
{
int nRetCode = 0;
HANDLE hWriteMailSlot = NULL;
while(TRUE)
{
hWriteMailSlot = CreateFile(MAIL\_SLOT\_NAME,GENERIC\_READ|GENERIC\_WRITE,FILE\_SHARE\_READ|FILE\_SHARE\_WRITE,NULL,OPEN\_EXISTING,
FILE\_ATTRIBUTE\_NORMAL,NULL);
if (hWriteMailSlot==INVALID\_HANDLE\_VALUE)
{
continue;
}
else
{
break;
}
}
DWORD dwReturn = 0;
char szBuffer\[1024\] = {0};
while (TRUE)
{
cin>>szBuffer;
if (strcmp(szBuffer,"Exit")==0)
{
break;
}
WriteFile(hWriteMailSlot,szBuffer,strlen(szBuffer),&dwReturn,NULL);
}
WriteFile(hWriteMailSlot,szBuffer,strlen(szBuffer),&dwReturn,NULL);
CloseHandle(hWriteMailSlot);
return nRetCode;
}
*邮件槽的实现和命名管道大同小异,都是A创建对象-->A写入数据-->B打开A创建的对象-->B读入数据。以前一直认为邮件槽是Windows与Linux共有的机制,自从某次上Liunx课和老师讨论了一会进程间通信的问题,
才愚蠢的知道Linux并没有邮件槽这个机制。
0X03
共享内存
进程A代码
using namespace std;
int _tmain(int argc, TCHAR* argv[], TCHAR* envp[])
{
int nRetCode = 0;
char szBuffer\[\] = "Shine";
HANDLE hMapping = CreateFileMapping(NULL,NULL,PAGE\_READWRITE,0,4096,L"ShareMemory");
LPVOID lpBase = MapViewOfFile(hMapping,FILE\_MAP\_WRITE|FILE\_MAP\_READ,0,0,0);
strcpy((char\*)lpBase,szBuffer);
Sleep(20000);
UnmapViewOfFile(lpBase);
CloseHandle(hMapping);
return nRetCode;
}
进程B代码
int _tmain(int argc, TCHAR* argv[], TCHAR* envp[])
{
int nRetCode = 0;
HANDLE hMapping = OpenFileMapping(FILE\_MAP\_ALL\_ACCESS,NULL,L"ShareMemory");
if (hMapping)
{
wprintf(L"%s\\r\\n",L"Success");
LPVOID lpBase = MapViewOfFile(hMapping,FILE\_MAP\_READ|FILE\_MAP\_WRITE,0,0,0);
char szBuffer\[20\] = {0};
strcpy(szBuffer,(char\*)lpBase);
printf("%s",szBuffer);
UnmapViewOfFile(lpBase);
CloseHandle(hMapping);
}
else
{
wprintf(L"%s",L"OpenMapping Error");
}
return nRetCode;
}
说道共享内存不得不说下内存映射:如何将一个文件映射到自己的缓冲区中。
打开文件-->计算文件大小-->创建内存映射对象Mapping-->mapofviewfile映射到自己的缓冲区中
通过文件映射来进行读写文件操作较为方便。
文件映射代码
int _tmain(int argc, TCHAR* argv[], TCHAR* envp[])
{
int nRetCode = 0;
HANDLE hFile = CreateFile(L"D:\\\\Demo.txt",GENERIC\_READ|GENERIC\_WRITE,FILE\_SHARE\_WRITE|FILE\_SHARE\_WRITE,NULL,OPEN\_EXISTING,FILE\_ATTRIBUTE\_NORMAL,NULL);
DWORD dwHigh = 0;
DWORD dwLow = 0;
dwLow = GetFileSize(hFile,&dwHigh);
dwLow = ((dwLow + 4095)/4096)\*4096;
if (hFile==INVALID\_HANDLE\_VALUE)
{
return -1;
}
HANDLE hMapping = CreateFileMapping(hFile,NULL,PAGE\_READWRITE,dwHigh,dwLow,NULL);
if (hMapping==NULL)
{
CloseHandle(hFile);
}
char\* szBuffer = NULL;
szBuffer = (char\*)MapViewOfFile(hMapping,FILE\_MAP\_ALL\_ACCESS,0,0,0);
if (szBuffer!=NULL)
{
cout<<szBuffer<<endl;
}
\*(szBuffer+1) = 'w';
UnmapViewOfFile(szBuffer);
CloseHandle(hMapping);
CloseHandle(hFile);
return nRetCode;
}
0X04
消息
进程A代码
void CServerDlg::OnBnClickedOk()
{
CString strBuffer;
m\_Edit.GetWindowText(strBuffer);
if (strBuffer.GetLength()==0)
{
return;
}
COPYDATASTRUCT Temp;
Temp.dwData = 0;
Temp.cbData = strBuffer.GetLength()\*sizeof(WCHAR); // sizeof 没有算 '\\0'
Temp.lpData = strBuffer.GetBuffer();
HWND hFindWindow = ::FindWindow(NULL,L"Client");
if (hFindWindow==NULL)
{
return;
}
::SendMessage(hFindWindow,WM\_COPYDATA,NULL,(LPARAM)&Temp);
}
进程B代码
进程B需要添加WM_COPYDATA消息
BOOL CClientDlg::OnCopyData(CWnd* pWnd, COPYDATASTRUCT* pCopyDataStruct)
{
// TODO: 在此添加消息处理程序代码和/或调用默认值
if (pCopyDataStruct->lpData==NULL||pCopyDataStruct->cbData==0)
{
return FALSE;
}
int nSize = 0; //字节20
int nLen = pCopyDataStruct->cbData+sizeof(WCHAR); //字符HelloWorld10 加了个'\\0'
WCHAR\* szBuffer = new WCHAR\[nLen>>1\]; // 右移一位 除以二 申请 同样大的内存
if (szBuffer==NULL)
{
return FALSE;
}
memset(szBuffer,0,sizeof(WCHAR)\*(nLen>>1));
memcpy(szBuffer,pCopyDataStruct->lpData,pCopyDataStruct->cbData);
m\_Edit.SetWindowText(szBuffer);
delete szBuffer;
szBuffer = NULL;
return CDialogEx::OnCopyData(pWnd, pCopyDataStruct);
}
这种方式是由操作系统负责给目标窗口传递 ,所以目标进程必须需要窗口,不然A得不到窗口句柄就无法传递。这种方式是通过Windows消息队列传递,看起来与之前的内核对象传递消息有悖,
那是因为操作系统把相关细节都屏蔽掉了,如果深究起来还是通过Ring0的操作系统空间内核对象进行传递。
剩下的套接字,RPC,DDE等也可用来进行进程间通信,但总有种杀鸡用牛刀的感觉。我并没有再进行整理,有兴趣的可以在进行了解了解。
手机扫一扫
移动阅读更方便
你可能感兴趣的文章