keras_yolo3阅读
阅读原文时间:2023年07月09日阅读:3

源码地址 https://github.com/qqwweee/keras-yolo3

春节期间仔细看了看yolov3的kears源码,这个源码毕竟不是作者写的,有点寒酸,可能大道至简也是这么个理。我在看源码的时候,参照了一些博客进行补充,主要是,作者公布的代码有点凌乱和我熟悉的代码风格不同的缘故吧。。。。。

看到大神的优秀博客,感觉自己的笔记有点炒冷饭的味道。。。

1.目录结构:

如下:这个就是直接从github上down下来的

.
├── coco_annotation.py
├── convert.py
├── darknet53.cfg
├── font
│   ├── FiraMono-Medium.otf
│   └── SIL Open Font License.txt
├── .gitignore
├── kmeans.py
├── LICENSE
├── model_data
│   ├── coco_classes.txt
│   ├── tiny_yolo_anchors.txt
│   ├── voc_classes.txt
│   └── yolo_anchors.txt
├── README.md
├── train_bottleneck.py
├── train.py
├── voc_annotation.py
├── yolo3
│   ├── __init__.py
│   ├── model.py
│   └── utils.py
├── yolo.py
├── yolov3.cfg
├── yolov3-tiny.cfg
└── yolo_video.py
  1. font是字体目录
  2. model_data:
    是各个数据库对应的模型的文件:
  • coco_classes文件: 就是coco文件的类别文件
    如下:

  • yolo_anchors文件:就是yolo3所需要的anchors大小
    如下

    这里的两文件可以根据数据不同改变,改成你所需要的类别。而anchors可以通过k-means进行聚类直接获得。

  1. yolo3:
    这里有model.py和utils.py文件。
  • model.py 就是构建yolo3的主要模块文件,这里一共有14个函数/
    如下:

  • utils.py 是在模型训练时进行数据处理的工具文件,一共有3个函数:

  1. *_annoataion.py 对数据进行转换的文件,把原始的文件转换为txt文件。
  • coco_annoataion.py 把json文件转换为txt文件
  • voc_annoataion.py 把xml文件转换为txt
  1. convert.py 把原始权重转换为kares的能读取的原始h5文件
  2. kmeans.py 输入上面得到的txt文件,通过聚类得到数据最佳anchors。
  3. train.py 进行yolov3训练的文件
  4. yolo.py 构建以yolov3为底层构件的yolo检测模型,因为上面的yolov3还是分开的单个函数,功能并没有融合在一起,即使在训练的时候所有的yolov3组件还是分开的功能,并没有统一接口,供在模型训练完成之后,直接使用。通过yolo.py融合所有的组件。
  5. yolo_video.py 使用yolo.py文件中的yolo检测模型,并且对视频中的物体进行检测。
  6. yolov3.cfg 构建yolov3检测模型的整个超参文件。

在阅读源码的时候主要参考:
https://github.com/SpikeKing/keras-yolo3-detection的几篇博文,但是为了更好理解keras-yolo3的代码,这几篇博文的对应文件如下:

kmens.py

import numpy as np

class YOLO_Kmeans:

    def __init__(self, cluster_number, filename):
        # 读取kmeans的中心数
        self.cluster_number = cluster_number
        # 标签文件的文件名
        self.filename = "2012_train.txt"

    def iou(self, boxes, clusters):  # 1 box -> k clusters
        # boxes : 所有的[width, height]
        # clusters : 9个随机的中心点[width, height]
        n = boxes.shape[0]
        k = self.cluster_number

        # 所有的boxes的面积
        box_area = boxes[:, 0] * boxes[:, 1]
        # 将box_area的每个元素重复k次
        box_area = box_area.repeat(k)
        box_area = np.reshape(box_area, (n, k))
        # 计算9个中点的面积
        cluster_area = clusters[:, 0] * clusters[:, 1]
        # 对cluster_area进行复制n份
        cluster_area = np.tile(cluster_area, [1, n])
        cluster_area = np.reshape(cluster_area, (n, k))
        # 获取box和中心的的交叉w的宽
        box_w_matrix = np.reshape(boxes[:, 0].repeat(k), (n, k))
        cluster_w_matrix = np.reshape(np.tile(clusters[:, 0], (1, n)), (n, k))
        min_w_matrix = np.minimum(cluster_w_matrix, box_w_matrix)
        # 获取box和中心的的交叉w的高
        box_h_matrix = np.reshape(boxes[:, 1].repeat(k), (n, k))
        cluster_h_matrix = np.reshape(np.tile(clusters[:, 1], (1, n)), (n, k))
        min_h_matrix = np.minimum(cluster_h_matrix, box_h_matrix)
        # 交叉点的面积
        inter_area = np.multiply(min_w_matrix, min_h_matrix)
        # 9个交叉点和所有的boxes的iou值
        result = inter_area / (box_area + cluster_area - inter_area)
        return result

    def avg_iou(self, boxes, clusters):
        #  计算9个中点与所有的boxes总的iou,n个点的平均iou
        accuracy = np.mean([np.max(self.iou(boxes, clusters), axis=1)])
        return accuracy

    def kmeans(self, boxes, k, dist=np.median):
        # np.median 求众数
        # boxes = [宽, 高]C
        # k 中心点数
        box_number = boxes.shape[0]
        distances = np.empty((box_number, k))
        last_nearest = np.zeros((box_number,))
        np.random.seed()
        # 从所有的boxe中选区9个随机中心点
        clusters = boxes[np.random.choice(
            box_number, k, replace=False)]  # init k clusters
        while True:
            # 计算所有的boxes和clusters的值(n,k)
            distances = 1 - self.iou(boxes, clusters)
            # 选取iou值最小的点(n,)
            current_nearest = np.argmin(distances, axis=1)
            # 中心点未改变,跳出
            if (last_nearest == current_nearest).all():
                break  # clusters won't change
            # 计算每个群组的中心或者众数
            for cluster in range(k):
                clusters[cluster] = dist(  # update clusters
                    boxes[current_nearest == cluster], axis=0)
            # 改变中心点
            last_nearest = current_nearest

        return clusters

    def result2txt(self, data):
        # 把9个中心点,写入txt文件
        f = open("yolo_anchors.txt", 'w')
        row = np.shape(data)[0]
        for i in range(row):
            if i == 0:
                x_y = "%d,%d" % (data[i][0], data[i][1])
            else:
                x_y = ", %d,%d" % (data[i][0], data[i][1])
            f.write(x_y)
        f.close()

    def txt2boxes(self):
        # 打开文件
        f = open(self.filename, 'r')
        dataSet = []
        # 读取文件
        for line in f:
            infos = line.split(" ")
            length = len(infos)
            # infons[0] 为图片的名称
            for i in range(1, length):
            # 获取文件的宽和高
                width = int(infos[i].split(",")[2]) - \
                    int(infos[i].split(",")[0])
                height = int(infos[i].split(",")[3]) - \
                    int(infos[i].split(",")[1])
                dataSet.append([width, height])
        result = np.array(dataSet)
        f.close()
        return result

    def txt2clusters(self):
        # 获取所有的文件目标的宽和高,width, height
        all_boxes = self.txt2boxes()
        # result 9个中心点
        result = self.kmeans(all_boxes, k=self.cluster_number)
        # 按最后一列顺序排序
        result = result[np.lexsort(result.T[0, None])]
        # 把结果写入txt文件
        self.result2txt(result)
        print("K anchors:\n {}".format(result))
        #  计算9个中点与所有的boxes总的iou,n个点的平均iou
        print("Accuracy: {:.2f}%".format(
            self.avg_iou(all_boxes, result) * 100))

if __name__ == "__main__":
    cluster_number = 9
    filename = "2012_train.txt"
    kmeans = YOLO_Kmeans(cluster_number, filename)
    kmeans.txt2clusters()

k-means拿到数据里所有的目标框,得到所有的宽和高,在这里面随机取得9个随即中心,之后以9个点为中心得到9个族,不断计算其他点到中点的距离调整每个点所归属的族和中心,直到9个中心不再变即可。这9个中心的x,y就是整个数据的9个合适的anchors==框的宽和高。

train.py

#!/usr/bin/env python
# -- coding: utf-8 --
"""
Copyright (c) 2018. All rights reserved.
Created by C. L. Wang on 2018/7/4
"""
import os
import numpy as np
import tensorflow as tf
import keras.backend as K
from keras.backend import mean
from keras.layers import Input, Lambda
from keras.models import Model
from keras.optimizers import Adam
from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
from keras.utils import plot_model

from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss
from yolo3.utils import get_random_data

def _main():
    import os
    os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
    from keras import backend as K
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    K.set_session(sess)

    annotation_path = 'dataset/WIDER_train.txt'  # 数据
    classes_path = 'configs/wider_classes.txt'  # 类别

    log_dir = 'logs/004/'  # 日志文件夹

    # pretrained_path = 'model_data/yolo_weights.h5'  # 预训练模型
    pretrained_path = 'logs/003/ep074-loss26.535-val_loss27.370.h5'  # 预训练模型
    anchors_path = 'configs/yolo_anchors.txt'  # anchors

    class_names = get_classes(classes_path)  # 类别列表
    num_classes = len(class_names)  # 类别数
    anchors = get_anchors(anchors_path)  # anchors列表

    input_shape = (416, 416)  # 32的倍数,输入图像

    # 创建需要训练的模型
    model = create_model(input_shape, anchors, num_classes,
                         freeze_body=2,
                         weights_path=pretrained_path)  # make sure you know what you freeze

    logging = TensorBoard(log_dir=log_dir)
    checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
                                 monitor='val_loss', save_weights_only=True,
                                 save_best_only=True, period=3)  # 只存储weights,
    #reduce_lr:当评价指标不在提升时,减少学习率,每次减少10%,当验证损失值,持续3次未减少时,则终止训练。

    #early_stopping:当验证集损失值,连续增加小于0时,持续10个epoch,则终止训练。
    reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1)  # 当评价指标不在提升时,减少学习率
    early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1)  # 测试集准确率,下降前终止

    val_split = 0.1  # 训练和验证的比例
    with open(annotation_path) as f:
        lines = f.readlines()
    np.random.seed(47)
    np.random.shuffle(lines)
    np.random.seed(None)
    num_val = int(len(lines) * val_split)  # 验证集数量
    num_train = len(lines) - num_val  # 训练集数量

    """
    把目标当成一个输入,构成多输入模型,把loss写成一个层,作为最后的输出,搭建模型的时候,
    就只需要将模型的output定义为loss,而compile的时候,
    直接将loss设置为y_pred(因为模型的输出就是loss,所以y_pred就是loss),
    无视y_true,训练的时候,y_true随便扔一个符合形状的数组进去就行了。
    """
    if False:
        model.compile(optimizer=Adam(lr=1e-3), loss={
            # 使用定制的 yolo_loss Lambda层
            'yolo_loss': lambda y_true, y_pred: y_pred})  # 损失函数

        batch_size = 32  # batch尺寸
        print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
        model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
                            steps_per_epoch=max(1, num_train // batch_size),
                            validation_data=data_generator_wrapper(
                                lines[num_train:], batch_size, input_shape, anchors, num_classes),
                            validation_steps=max(1, num_val // batch_size),
                            epochs=50,
                            initial_epoch=0,
                            callbacks=[logging, checkpoint])
        model.save_weights(log_dir + 'trained_weights_stage_1.h5')  # 存储最终的参数,再训练过程中,通过回调存储

    if True:  # 全部训练
        for i in range(len(model.layers)):
            model.layers[i].trainable = True

        model.compile(optimizer=Adam(lr=1e-4),
                      loss={'yolo_loss': lambda y_true, y_pred: y_pred})  # recompile to apply the change
        print('Unfreeze all of the layers.')

        batch_size = 16  # note that more GPU memory is required after unfreezing the body
        print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))

        model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
                            steps_per_epoch=max(1, num_train // batch_size),
                            validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors,
                                                                   num_classes),
                            validation_steps=max(1, num_val // batch_size),
                            epochs=100,
                            initial_epoch=50,
                            callbacks=[logging, checkpoint, reduce_lr, early_stopping])
        model.save_weights(log_dir + 'trained_weights_final.h5')

def get_classes(classes_path):
    # 输入类别文件,读取文件中所有的类别,生成list
    '''loads the classes'''
    with open(classes_path) as f:
        class_names = f.readlines()
    class_names = [c.strip() for c in class_names]
    return class_names

def get_anchors(anchors_path):
    # 获取所有的anchors的长和宽
    '''loads the anchors from a file'''
    with open(anchors_path) as f:
        anchors = f.readline()
    anchors = [float(x) for x in anchors.split(',')]
    return np.array(anchors).reshape(-1, 2)

def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
                 weights_path='model_data/yolo_weights.h5'):
    K.clear_session()  # 清除session
    h, w = input_shape  # 尺寸
    image_input = Input(shape=(w, h, 3))  # 图片输入格式
    num_anchors = len(anchors)  # anchor数量

    # YOLO的三种尺度,每个尺度的anchor数,类别数+边框4个+置信度1
    y_true = [Input(shape=(h // {0: 32, 1: 16, 2: 8}[l], w // {0: 32, 1: 16, 2: 8}[l],
                           num_anchors // 3, num_classes + 5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors // 3, num_classes)  # model
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:  # 加载预训练模型
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)  # 加载参数,跳过错误
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers) - 3)[freeze_body - 1]
            for i in range(num):
                model_body.layers[i].trainable = False  # 将其他层的训练关闭
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
    # 构建 yolo_loss
    # model_body: [(?, 13, 13, 18), (?, 26, 26, 18), (?, 52, 52, 18)]
    # y_true: [(?, 13, 13, 18), (?, 26, 26, 18), (?, 52, 52, 18)]
    model_loss = Lambda(yolo_loss,
                        output_shape=(1,), name='yolo_loss',
                        arguments={'anchors': anchors,
                                   'num_classes': num_classes,
                                   'ignore_thresh': 0.5}
                        )(model_body.output + y_true)
    model = Model(inputs=[model_body.input] + y_true, outputs=model_loss)  # 模型,inputs和outputs
    plot_model(model, to_file=os.path.join('model_data', 'model.png'), show_shapes=True, show_layer_names=True)
    model.summary()
    #
    return model

def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):
    '''data generator for fit_generator
    annotation_lines: 所有的图片名称
    batch_size:每批图片的大小
    input_shape: 图片的输入尺寸
    anchors: 大小
    num_classes: 类别数
    '''

    n = len(annotation_lines)
    i = 0
    while True:
        image_data = []
        box_data = []
        for b in range(batch_size):
            if i == 0:
                # 随机排列图片顺序
                np.random.shuffle(annotation_lines)
            # image_data: (16, 416, 416, 3)
            # box_data: (16, 20, 5) # 每个图片最多含有20个框
            image, box = get_random_data(annotation_lines[i], input_shape, random=True)  # 获取图片和盒子
            #获取真实的数据根据输入的尺寸对原始数据进行缩放处理得到input_shape大小的数据图片,
            # 随机进行图片的翻转,标记数据数据也根据比例改变
            image_data.append(image)  # 添加图片
            box_data.append(box)  # 添加盒子
            i = (i + 1) % n
        image_data = np.array(image_data)
        box_data = np.array(box_data)
        # y_true是3个预测特征的列表
        y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)  # 真值
        # y_true的第0和1位是中心点xy,范围是(0~13/26/52),第2和3位是宽高wh,范围是0~1,
        # 第4位是置信度1或0,第5~n位是类别为1其余为0。
        # [(16, 13, 13, 3, 6), (16, 26, 26, 3, 6), (16, 52, 52, 3, 6)]
        yield [image_data] + y_true, np.zeros(batch_size)

def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes):
    """
    用于条件检查
    """
    n = len(annotation_lines)  # 标注图片的行数
    if n == 0 or batch_size <= 0: return None
    return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes)

if __name__ == '__main__':
    _main()

在train.py中主要就是构建yolov3的训练模型,这里作者使用自定义loss的方式进行模型训练并没有,在loss时输入y_true, y_pred。具体参考Keras中自定义目标函数(损失函数)的简单方法
Keras中自定义复杂的loss函数,这两篇博客,主要时loss在loss函数里已经把y_true和y_pred计算完成了,所以之后的y_pred,在数据生成器(data_generator)有如下体现,np.zeros(batch_size)

        yield [image_data] + y_true, np.zeros(batch_size)

,这个train.py有两个train模式,一个是冻结模型,一个是微调模型。冻结那几个层手动调节,1是冻结DarkNet53的层,2是冻结全部,只保留最后3层。

model.py

#!/usr/bin/env python
# -- coding: utf-8 --
"""
Copyright (c) 2018. All rights reserved.
Created by C. L. Wang on 2018/7/4
"""

from functools import wraps

import numpy as np
import tensorflow as tf
from keras import backend as K
from keras.layers import Conv2D, Add, ZeroPadding2D, UpSampling2D, Concatenate, MaxPooling2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from keras.regularizers import l2

from yolo3.utils import compose

@wraps(Conv2D)
def DarknetConv2D(*args, **kwargs):
    # 普通的卷积网络,带正则化,当步长为2时进行下采样
    """Wrapper to set Darknet parameters for Convolution2D."""
    darknet_conv_kwargs = {'kernel_regularizer': l2(5e-4)}
    darknet_conv_kwargs['padding'] = 'valid' if kwargs.get('strides') == (2, 2) else 'same'
    darknet_conv_kwargs.update(kwargs)
    return Conv2D(*args, **darknet_conv_kwargs)

def DarknetConv2D_BN_Leaky(*args, **kwargs):
    # 没有偏置,带正则项
    """Darknet Convolution2D followed by BatchNormalization and LeakyReLU."""
    no_bias_kwargs = {'use_bias': False}
    no_bias_kwargs.update(kwargs)
    return compose(
        DarknetConv2D(*args, **no_bias_kwargs),
        BatchNormalization(),
        LeakyReLU(alpha=0.1))

def resblock_body(x, num_filters, num_blocks):
    # 使用残差块, 1 + 2 * num_filters 为总的卷积层数
    '''A series of resblocks starting with a downsampling Convolution2D'''
    # Darknet uses left and top padding instead of 'same' mode
    x = ZeroPadding2D(((1, 0), (1, 0)))(x)
    x = DarknetConv2D_BN_Leaky(num_filters, (3, 3), strides=(2, 2))(x)
    for i in range(num_blocks):
        y = compose(
            DarknetConv2D_BN_Leaky(num_filters // 2, (1, 1)),
            DarknetConv2D_BN_Leaky(num_filters, (3, 3)))(x)
        x = Add()([x, y])
    return x

def darknet_body(x):
    # darknet的主体网络52层卷积网络
    '''Darknent body having 52 Convolution2D layers'''
    x = DarknetConv2D_BN_Leaky(32, (3, 3))(x)
    x = resblock_body(x, num_filters=64, num_blocks=1)
    x = resblock_body(x, num_filters=128, num_blocks=2)
    x = resblock_body(x, num_filters=256, num_blocks=8)
    x = resblock_body(x, num_filters=512, num_blocks=8)
    x = resblock_body(x, num_filters=1024, num_blocks=4)
    return x

def make_last_layers(x, num_filters, out_filters):
    # 最后检测头部,无降采采样操作
    '''6 Conv2D_BN_Leaky layers followed by a Conv2D_linear layer'''
    x = compose(
        DarknetConv2D_BN_Leaky(num_filters, (1, 1)),
        DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)),
        DarknetConv2D_BN_Leaky(num_filters, (1, 1)),
        DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)),
        DarknetConv2D_BN_Leaky(num_filters, (1, 1)))(x)
    y = compose(
        DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)),
        DarknetConv2D(out_filters, (1, 1)))(x)
    return x, y

def yolo_body(inputs, num_anchors, num_classes):
    """Create YOLO_V3 model CNN body in Keras."""
    darknet = Model(inputs, darknet_body(inputs))
    x, y1 = make_last_layers(darknet.output, 512, num_anchors * (num_classes + 5))
    # 上采样
    x = compose(
        DarknetConv2D_BN_Leaky(256, (1, 1)),
        UpSampling2D(2))(x)
    x = Concatenate()([x, darknet.layers[152].output])
    x, y2 = make_last_layers(x, 256, num_anchors * (num_classes + 5))
    # 上采样
    x = compose(
        DarknetConv2D_BN_Leaky(128, (1, 1)),
        UpSampling2D(2))(x)
    x = Concatenate()([x, darknet.layers[92].output])
    _, y3 = make_last_layers(x, 128, num_anchors * (num_classes + 5))
    # 上采样 y1, y2, y3
    # 13x13, 26x26, 52x52
    return Model(inputs, [y1, y2, y3])

def tiny_yolo_body(inputs, num_anchors, num_classes):
    '''Create Tiny YOLO_v3 model CNN body in keras.'''
    x1 = compose(
        DarknetConv2D_BN_Leaky(16, (3, 3)),
        MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
        DarknetConv2D_BN_Leaky(32, (3, 3)),
        MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
        DarknetConv2D_BN_Leaky(64, (3, 3)),
        MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
        DarknetConv2D_BN_Leaky(128, (3, 3)),
        MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
        DarknetConv2D_BN_Leaky(256, (3, 3)))(inputs)
    x2 = compose(
        MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
        DarknetConv2D_BN_Leaky(512, (3, 3)),
        MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding='same'),
        DarknetConv2D_BN_Leaky(1024, (3, 3)),
        DarknetConv2D_BN_Leaky(256, (1, 1)))(x1)
    y1 = compose(
        DarknetConv2D_BN_Leaky(512, (3, 3)),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x2)

    x2 = compose(
        DarknetConv2D_BN_Leaky(128, (1, 1)),
        UpSampling2D(2))(x2)
    y2 = compose(
        Concatenate(),
        DarknetConv2D_BN_Leaky(256, (3, 3)),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))([x2, x1])

    return Model(inputs, [y1, y2])

def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False):
    """
    feats的后处理函数,feats就是yolo_outputs,把输出转换到inputs的坐标系
    """
    num_anchors = len(anchors)
    # Reshape to batch, height, width, num_anchors, box_params.
    anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])

    grid_shape = K.shape(feats)[1:3]  # height, width
    grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
                    [1, grid_shape[1], 1, 1])
    grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
                    [grid_shape[0], 1, 1, 1])
    grid = K.concatenate([grid_x, grid_y])
    grid = K.cast(grid, K.dtype(feats))
    # Reshape to batch, height, width, num_anchors, box_params.
    feats = K.reshape(
        feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])

    # Adjust preditions to each spatial grid point and anchor size.
    # 把结果转化到每个格子中,坐标为图片的坐标系的0-1,类别预测也为0-1
    box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats))  # xy是归一化的值
    box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats))  # wh是归一化的值
    box_confidence = K.sigmoid(feats[..., 4:5])
    box_class_probs = K.sigmoid(feats[..., 5:])

    if calc_loss == True:
        return grid, feats, box_xy, box_wh
    return box_xy, box_wh, box_confidence, box_class_probs

def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape):
    '''Get corrected boxes'''
    # 把预测的图片转换到原始图片的大小
    box_yx = box_xy[..., ::-1]
    box_hw = box_wh[..., ::-1]
    input_shape = K.cast(input_shape, K.dtype(box_yx))
    image_shape = K.cast(image_shape, K.dtype(box_yx))
    new_shape = K.round(image_shape * K.min(input_shape / image_shape))
    offset = (input_shape - new_shape) / 2. / input_shape
    scale = input_shape / new_shape
    box_yx = (box_yx - offset) * scale
    box_hw *= scale

    box_mins = box_yx - (box_hw / 2.)
    box_maxes = box_yx + (box_hw / 2.)
    boxes = K.concatenate([
        box_mins[..., 0:1],  # y_min
        box_mins[..., 1:2],  # x_min
        box_maxes[..., 0:1],  # y_max
        box_maxes[..., 1:2]  # x_max
    ])

    # Scale boxes back to original image shape.
    boxes *= K.concatenate([image_shape, image_shape])
    return boxes

def yolo_boxes_and_scores(feats, anchors, num_classes, input_shape, image_shape):
    '''Process Conv layer output'''
    # 对yolo的输出进行后处理,输出合适原始图片的box和scores
    box_xy, box_wh, box_confidence, box_class_probs = yolo_head(
        feats, anchors, num_classes, input_shape)
    boxes = yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape)
    boxes = K.reshape(boxes, [-1, 4])
    box_scores = box_confidence * box_class_probs
    box_scores = K.reshape(box_scores, [-1, num_classes])
    return boxes, box_scores

def yolo_eval(yolo_outputs, anchors, num_classes, image_shape,
              max_boxes=20, score_threshold=.6, iou_threshold=.5):
    """Evaluate YOLO model on given input and return filtered boxes."""
    # 使用yolo模型进行图片的检测,进行坐标转化,和nms处理,和

    num_layers = len(yolo_outputs)
    anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] if num_layers == 3 else [[3, 4, 5], [1, 2, 3]]  # default setting
    input_shape = K.shape(yolo_outputs[0])[1:3] * 32
    boxes = []
    box_scores = []
    for l in range(num_layers):
        _boxes, _box_scores = yolo_boxes_and_scores(
            yolo_outputs[l], anchors[anchor_mask[l]], num_classes, input_shape, image_shape)
        boxes.append(_boxes)
        box_scores.append(_box_scores)
    boxes = K.concatenate(boxes, axis=0)
    box_scores = K.concatenate(box_scores, axis=0)

    mask = box_scores >= score_threshold
    max_boxes_tensor = K.constant(max_boxes, dtype='int32')
    boxes_ = []
    scores_ = []
    classes_ = []
    for c in range(num_classes):
        # 进行nms处理
        # TODO: use keras backend instead of tf.
        class_boxes = tf.boolean_mask(boxes, mask[:, c])
        class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c])
        nms_index = tf.image.non_max_suppression(
            class_boxes, class_box_scores, max_boxes_tensor, iou_threshold=iou_threshold)
        class_boxes = K.gather(class_boxes, nms_index)
        class_box_scores = K.gather(class_box_scores, nms_index)
        classes = K.ones_like(class_box_scores, 'int32') * c
        boxes_.append(class_boxes)
        scores_.append(class_box_scores)
        classes_.append(classes)
    boxes_ = K.concatenate(boxes_, axis=0)
    scores_ = K.concatenate(scores_, axis=0)
    classes_ = K.concatenate(classes_, axis=0)

    return boxes_, scores_, classes_

def preprocess_true_boxes(true_boxes, input_shape, anchors, num_classes):
    '''Preprocess true boxes to training input format
    y_true的第0和1位是中心点xy,范围是(0~13/26/52),第2和3位是宽高wh,范围是0~1,
    第4位是置信度1或0,第5~n位是类别为1其余为0。

    Parameters
    ----------
    true_boxes: array, shape=(m, T, 5)
        Absolute x_min, y_min, x_max, y_max, class_id relative to input_shape.
    input_shape: array-like, hw, multiples of 32
    anchors: array, shape=(N, 2), wh
    num_classes: integer

    Returns
    -------
    y_true: list of array, shape like yolo_outputs, xywh are reletive value

    '''
    assert (true_boxes[..., 4] < num_classes).all(), 'class id must be less than num_classes'
    num_layers = len(anchors) // 3  # default setting
    anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] if num_layers == 3 else [[3, 4, 5], [1, 2, 3]]
    # 所有的真实标注
    true_boxes = np.array(true_boxes, dtype='float32')
    # 模型的输入尺寸
    input_shape = np.array(input_shape, dtype='int32')
    # 获取目标输入x,y
    boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2
    # 获取目标的w,h
    boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2]
    # 这时候坐标变为0~1
    true_boxes[..., 0:2] = boxes_xy / input_shape[::-1]
    true_boxes[..., 2:4] = boxes_wh / input_shape[::-1]
    # 获取所有的这是标记的数量
    m = true_boxes.shape[0]
    # 得到模型每一个输出y1-y3的下采样之后的特征图片大小
    grid_shapes = [input_shape // {0: 32, 1: 16, 2: 8}[l] for l in range(num_layers)]
    # 获取三组y_true
    # [(16, 13, 13, 3, 6), (16, 26, 26, 3, 6), (16, 52, 52, 3, 6)],
    y_true = [np.zeros((m, grid_shapes[l][0], grid_shapes[l][1], len(anchor_mask[l]), 5 + num_classes),
                       dtype='float32') for l in range(num_layers)]

    # Expand dim to apply broadcasting.
    # 9个anchors的值
    anchors = np.expand_dims(anchors, 0)
    anchor_maxes = anchors / 2.
    anchor_mins = -anchor_maxes
    valid_mask = boxes_wh[..., 0] > 0

    for b in range(m):
        # Discard zero rows.
        # 只第b个boxes选取wh大于0的anchors
        wh = boxes_wh[b, valid_mask[b]]
        if len(wh) == 0: continue
        # Expand dim to apply broadcasting.
        wh = np.expand_dims(wh, -2)
        box_maxes = wh / 2.
        box_mins = -box_maxes
        # 求目标的范围,和anchors的iou值,查看目标的标记值与9个anchors哪个iou最大
        intersect_mins = np.maximum(box_mins, anchor_mins)
        intersect_maxes = np.minimum(box_maxes, anchor_maxes)
        intersect_wh = np.maximum(intersect_maxes - intersect_mins, 0.)
        intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
        box_area = wh[..., 0] * wh[..., 1]
        anchor_area = anchors[..., 0] * anchors[..., 1]
        iou = intersect_area / (box_area + anchor_area - intersect_area)
        # 从每个iou值中,找到iou值最大的目标
        # Find best anchor for each true box
        # 得到9个anchos的一个值
        best_anchor = np.argmax(iou, axis=-1)

        for t, n in enumerate(best_anchor):
            # t,n为9个最大之中的某一个
            for l in range(num_layers):
                # 三层y1
                if n in anchor_mask[l]:
                    # i就是在对应的特征图上的实际尺寸的宽,就是高
                    i = np.floor(true_boxes[b, t, 0] * grid_shapes[l][1]).astype('int32')
                    j = np.floor(true_boxes[b, t, 1] * grid_shapes[l][0]).astype('int32')
                    k = anchor_mask[l].index(n)
                    c = true_boxes[b, t, 4].astype('int32')
                    # y_true的第0和1位是中心点xy,范围是(0~13/26/52),
                    # 第2和3位是宽高wh,范围是0~1,
                    # 第4位是置信度1或0,
                    # 第5~n位是类别为1其余为0。
                    y_true[l][b, j, i, k, 0:4] = true_boxes[b, t, 0:4]
                    y_true[l][b, j, i, k, 4] = 1
                    y_true[l][b, j, i, k, 5 + c] = 1
    # [(16, 13, 13, 3, 6), (16, 26, 26, 3, 6), (16, 52, 52, 3, 6)]
    return y_true

def box_iou(b1, b2):
    '''Return iou tensor

    Parameters
    ----------
    b1: tensor, shape=(i1,...,iN, 4), xywh
    b2: tensor, shape=(j, 4), xywh

    Returns
    -------
    iou: tensor, shape=(i1,...,iN, j)

    '''

    # Expand dim to apply broadcasting.
    b1 = K.expand_dims(b1, -2)
    b1_xy = b1[..., :2]
    b1_wh = b1[..., 2:4]
    b1_wh_half = b1_wh / 2.
    b1_mins = b1_xy - b1_wh_half
    b1_maxes = b1_xy + b1_wh_half

    # Expand dim to apply broadcasting.
    b2 = K.expand_dims(b2, 0)
    b2_xy = b2[..., :2]
    b2_wh = b2[..., 2:4]
    b2_wh_half = b2_wh / 2.
    b2_mins = b2_xy - b2_wh_half
    b2_maxes = b2_xy + b2_wh_half

    intersect_mins = K.maximum(b1_mins, b2_mins)
    intersect_maxes = K.minimum(b1_maxes, b2_maxes)
    intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
    intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
    b1_area = b1_wh[..., 0] * b1_wh[..., 1]
    b2_area = b2_wh[..., 0] * b2_wh[..., 1]
    iou = intersect_area / (b1_area + b2_area - intersect_area)

    return iou

def yolo_loss(args, anchors, num_classes, ignore_thresh=.5, print_loss=True):
    '''Return yolo_loss tensor

    Parameters
    ----------
    yolo_outputs: list of tensor, the output of yolo_body or tiny_yolo_body
    y_true: list of array, the output of preprocess_true_boxes
    anchors: array, shape=(N, 2), wh
    num_classes: integer
    ignore_thresh: float, the iou threshold whether to ignore object confidence loss

    Returns
    -------
    loss: tensor, shape=(1,)

    '''
    num_layers = len(anchors) // 3  # default setting
    # 获取模型的输出,获取输入真值
    yolo_outputs = args[:num_layers]
    y_true = args[num_layers:]
    anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] if num_layers == 3 else [[3, 4, 5], [1, 2, 3]]
    # input_shape是输出的尺寸*32, 就是原始的输入尺寸,[1:3]是尺寸的位置
    input_shape = K.cast(K.shape(yolo_outputs[0])[1:3] * 32, K.dtype(y_true[0]))
    # 每个网格的尺寸,
    grid_shapes = [K.cast(K.shape(yolo_outputs[l])[1:3], K.dtype(y_true[0])) for l in range(num_layers)]
    loss = 0
    m = K.shape(yolo_outputs[0])[0]  # batch size, tensor
    mf = K.cast(m, K.dtype(yolo_outputs[0]))
    # y_true的第0和1位是中心点xy,范围是(0~13/26/52),
    # 第2和3位是宽高wh,范围是0~1,
    # 第4位是置信度1或0,
    # 第5~n位是类别为1其余为0。
    for l in range(num_layers):
        object_mask = y_true[l][..., 4:5] # 1
        true_class_probs = y_true[l][..., 5:]
        # 这是yolo_outputs的后处理程序
        grid, raw_pred, pred_xy, pred_wh = \
            yolo_head(yolo_outputs[l], anchors[anchor_mask[l]],
                      num_classes, input_shape, calc_loss=True)
        pred_box = K.concatenate([pred_xy, pred_wh])

        # Darknet raw box to calculate loss.
        # bugfix grid_shapes重复相乘,另一个在preprocess_true_boxes中
        # 把真实的坐标转换到预测坐标系
        raw_true_xy = y_true[l][..., :2] * grid_shapes[l][::-1] - grid
        raw_true_wh = K.log(y_true[l][..., 2:4] / anchors[anchor_mask[l]] * input_shape[::-1])  # 1
        raw_true_wh = K.switch(object_mask, raw_true_wh, K.zeros_like(raw_true_wh))  # avoid log(0)=-inf
        box_loss_scale = 2 - y_true[l][..., 2:3] * y_true[l][..., 3:4]  # 2-w*h

        # Find ignore mask, iterate over each of batch.
        ignore_mask = tf.TensorArray(K.dtype(y_true[0]), size=1, dynamic_size=True)
        object_mask_bool = K.cast(object_mask, 'bool')

        def loop_body(b, ignore_mask):
            true_box = tf.boolean_mask(y_true[l][b, ..., 0:4], object_mask_bool[b, ..., 0])
            iou = box_iou(pred_box[b], true_box)
            best_iou = K.max(iou, axis=-1)
            ignore_mask = ignore_mask.write(b, K.cast(best_iou < ignore_thresh, K.dtype(true_box)))
            return b + 1, ignore_mask

        _, ignore_mask = K.control_flow_ops.while_loop(lambda b, *args: b < m, loop_body, [0, ignore_mask])
        ignore_mask = ignore_mask.stack()
        ignore_mask = K.expand_dims(ignore_mask, -1)

        # K.binary_crossentropy is helpful to avoid exp overflow.
        xy_loss = object_mask * box_loss_scale * K.binary_crossentropy(raw_true_xy, raw_pred[..., 0:2],
                                                                       from_logits=True)
        wh_loss = object_mask * box_loss_scale * 0.5 * K.square(raw_true_wh - raw_pred[..., 2:4])
        confidence_loss = object_mask * K.binary_crossentropy(object_mask, raw_pred[..., 4:5], from_logits=True) + \
                          (1 - object_mask) * K.binary_crossentropy(object_mask, raw_pred[..., 4:5],
                                                                    from_logits=True) * ignore_mask
        class_loss = object_mask * K.binary_crossentropy(true_class_probs, raw_pred[..., 5:], from_logits=True)

        xy_loss = K.sum(xy_loss) / mf
        wh_loss = K.sum(wh_loss) / mf
        confidence_loss = K.sum(confidence_loss) / mf
        class_loss = K.sum(class_loss) / mf
        loss += xy_loss + wh_loss + confidence_loss + class_loss
        if print_loss:
            loss = tf.Print(loss, [loss, xy_loss, wh_loss, confidence_loss, class_loss, K.sum(ignore_mask)],
                            message='loss: ')
    return loss

在model.py中有几个函数需要进行讲解:

  1. DarknetConv2D(*args, **kwargs)普通的卷积网络,带正则化,当步长为2时进行下采
  2. DarknetConv2D_BN_Leaky(*args, **kwargs)没有偏置,带正则项
  3. resblock_body(x, num_filters, num_blocks)使用残差块, 1 + 2 * num_filters 为总的卷积层数
  4. darknet_body(x) darknet的主体网络52层卷积网络
  5. make_last_layers(x, num_filters, out_filters) yolo最后检测头部,无降采采样操作
  6. yolo_body(inputs, num_anchors, num_classes)yolov3的三个检测输出部分
  7. yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False) feats的后处理函数,feats就是yolo_outputs,把输出转换到inputs的坐标系
  8. yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape) 把预测的图片转换到原始图片的大小
  9. yolo_boxes_and_scores(feats, anchors, num_classes, input_shape, image_shape) 对yolo的输出进行后处理,输出合适原始图片的box和scores
  10. yolo_eval(yolo_outputs, anchors, num_classes, image_shape,
    max_boxes=20, score_threshold=.6, iou_threshold=.5) 使用yolo模型进行图片的检测,进行坐标转化,和nms处理
  11. preprocess_true_boxes(true_boxes, input_shape, anchors, num_classes) 对图片中标记的数据与anchors进行转换,转换到预测的坐标系
  12. yolo_loss(args, anchors, num_classes, ignore_thresh=.5, print_loss=True) 构建loss

utils.py

#!/usr/bin/env python
# -- coding: utf-8 --

"""Miscellaneous utility functions."""

from functools import reduce

from PIL import Image
import numpy as np
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb

def compose(*funcs):
    """
    https://blog.csdn.net/jmu201521121021/article/details/86626976
    # 参数为多个函数名,按照reduce的功能执行,把前一个函数的结果作为下一个函数的输入,知道最后执行完毕
    Compose arbitrarily many functions, evaluated left to right.

    Reference: https://mathieularose.com/function-composition-in-python/
    """
    # return lambda x: reduce(lambda v, f: f(v), funcs, x)
    if funcs:
        return reduce(lambda f, g: lambda *a, **kw: g(f(*a, **kw)), funcs)
    else:
        raise ValueError('Composition of empty sequence not supported.')

def letterbox_image(image, size):
    '''resize image with unchanged aspect ratio using padding'''
    iw, ih = image.size  # 原始图像是1200x1800
    w, h = size  # 转换为416x416
    scale = min(float(w) / float(iw), float(h) / float(ih))  # 转换比例
    nw = int(iw * scale)  # 新图像的宽,保证新图像是等比下降的
    nh = int(ih * scale)  # 新图像的高

    image = image.resize((nw, nh), Image.BICUBIC)  # 缩小图像
    new_image = Image.new('RGB', size, (128, 128, 128))  # 生成灰色图像
    new_image.paste(image, ((w - nw) // 2, (h - nh) // 2))  # 将图像填充为中间图像,两侧为灰色的样式
    return new_image

def rand(a=0., b=1.):
    return np.random.rand() * (b - a) + a

def get_random_data(
        annotation_line, input_shape, random=True,
        max_boxes=20, jitter=.3, hue=.1, sat=1.5,
        val=1.5, proc_img=True):
    '''random preprocessing for real-time data augmentation:
    获取真实的数据根据输入的尺寸对原始数据进行缩放处理得到input_shape大小的数据图片,
    随机进行图片的翻转,标记数据数据也根据比例改变
        annotation_line: 单条图片的信息的列表
        input_shape:输入的尺寸
    '''
    # 处理图片
    line = annotation_line.split()
    # 读取图片图片
    image = Image.open(line[0])
    # 原始图片的比例
    iw, ih = image.size
    # 获取模型的输入图片的大小
    h, w = input_shape
    box = np.array([np.array(list(map(int, box.split(',')))) for box in line[1:]])

    if not random:
        # resize image
        # 获取原始图片和模型输入图片的比例
        scale = min(float(w) / float(iw), float(h) / float(ih))
        nw = int(iw * scale)
        nh = int(ih * scale)
        dx = (w - nw) // 2
        dy = (h - nh) // 2
        image_data = 0
        if proc_img:
            image = image.resize((nw, nh), Image.BICUBIC)
            # 首先创建一张灰色的图片
            new_image = Image.new('RGB', (w, h), (128, 128, 128))
            # 把原始的图片粘贴到灰色图片上
            new_image.paste(image, (dx, dy))
            image_data = np.array(new_image) / 255.

        # correct boxes
        box_data = np.zeros((max_boxes, 5))
        # 对所有的图片中的目标进行缩放
        if len(box) > 0:
            np.random.shuffle(box)
            if len(box) > max_boxes: box = box[:max_boxes]  # 最多只取20个
            box[:, [0, 2]] = box[:, [0, 2]] * scale + dx
            box[:, [1, 3]] = box[:, [1, 3]] * scale + dy
            box_data[:len(box)] = box

        return image_data, box_data

    # resize image
    # 随机的图片比例变换
    new_ar = w / h * rand(1 - jitter, 1 + jitter) / rand(1 - jitter, 1 + jitter)
    scale = rand(.25, 2.)
    # 计算新的图片尺寸
    if new_ar < 1:
        nh = int(scale * h)
        nw = int(nh * new_ar)
    else:
        nw = int(scale * w)
        nh = int(nw / new_ar)
    # 改变图片尺寸
    image = image.resize((nw, nh), Image.BICUBIC)

    # place image
    # 随机把图片摆放在灰度图片上
    dx = int(rand(0, w - nw))
    dy = int(rand(0, h - nh))
    new_image = Image.new('RGB', (w, h), (128, 128, 128))
    new_image.paste(image, (dx, dy))
    image = new_image

    # flip image or not
    # 是否反转图片
    flip = rand() < .5
    if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT)

    # distort image
    # 在HSV坐标域中,改变图片的颜色范围,hue值相加,sat和vat相乘,
    # 先由RGB转为HSV,再由HSV转为RGB,添加若干错误判断,避免范围过大。
    hue = rand(-hue, hue)
    sat = rand(1, sat) if rand() < .5 else 1 / rand(1, sat)
    val = rand(1, val) if rand() < .5 else 1 / rand(1, val)
    x = rgb_to_hsv(np.array(image) / 255.)
    x[..., 0] += hue
    x[..., 0][x[..., 0] > 1] -= 1
    x[..., 0][x[..., 0] < 0] += 1
    x[..., 1] *= sat
    x[..., 2] *= val
    x[x > 1] = 1
    x[x < 0] = 0
    image_data = hsv_to_rgb(x)  # numpy array, 0 to 1

    # correct boxes
    # 将所有的图片变换,增加至检测框中,并且包含若干异常处理,
    # 避免变换之后的值过大或过小,去除异常的box。
    box_data = np.zeros((max_boxes, 5))
    if len(box) > 0:
        np.random.shuffle(box)
        # 变换所有目标的尺寸
        box[:, [0, 2]] = box[:, [0, 2]] * nw / iw + dx
        box[:, [1, 3]] = box[:, [1, 3]] * nh / ih + dy
        # 如果已经翻转了需要进行坐标变换,并且把坐标限制在图片内
        if flip: box[:, [0, 2]] = w - box[:, [2, 0]]
        box[:, 0:2][box[:, 0:2] < 0] = 0
        box[:, 2][box[:, 2] > w] = w
        box[:, 3][box[:, 3] > h] = h
        box_w = box[:, 2] - box[:, 0]
        box_h = box[:, 3] - box[:, 1]
        box = box[np.logical_and(box_w > 1, box_h > 1)]  # discard invalid box
        # 最大的目标数不能超过超参数
        if len(box) > max_boxes: box = box[:max_boxes]
        box_data[:len(box)] = box

    return image_data, box_data

这里的get_random_data就是对原始数据进行处理的函数,获取真实的数据根据输入的尺寸对原始数据进行缩放处理得到input_shape大小的数据图片,
随机进行图片的翻转,标记数据数据也根据比例改变

yolo.py

#!/usr/bin/env python
# -- coding: utf-8 --
"""
Copyright (c) 2018. All rights reserved.
Created by C. L. Wang on 2018/7/4
"""

"""
Run a YOLO_v3 style detection model on test images.
"""

import colorsys
import os
from timeit import default_timer as timer

import numpy as np
from PIL import Image, ImageFont, ImageDraw
from keras import backend as K
from keras.layers import Input
from yolo3.model import yolo_eval, yolo_body
from yolo3.utils import letterbox_image

class YOLO(object):
    def __init__(self):
        self.anchors_path = 'configs/yolo_anchors.txt'  # Anchors
        self.model_path = 'model_data/yolo_weights.h5'  # 模型文件
        self.classes_path = 'configs/coco_classes_ch.txt'  # 类别文件

        # self.model_path = 'model_data/ep074-loss26.535-val_loss27.370.h5'  # 模型文件
        # self.classes_path = 'configs/wider_classes.txt'  # 类别文件

        self.score = 0.60
        self.iou = 0.45
        # self.iou = 0.01
        self.class_names = self._get_class()  # 获取类别
        self.anchors = self._get_anchors()  # 获取anchor
        self.sess = K.get_session()
        self.model_image_size = (416, 416)  # fixed size or (None, None), hw

        self.colors = self.__get_colors(self.class_names)
        self.boxes, self.scores, self.classes = self.generate()

    def _get_class(self):
        # 获取检测类别
        classes_path = os.path.expanduser(self.classes_path)
        with open(classes_path, encoding='utf8') as f:
            class_names = f.readlines()
        class_names = [c.strip() for c in class_names]
        return class_names

    def _get_anchors(self):
        # 获取检测的anchors
        anchors_path = os.path.expanduser(self.anchors_path)
        with open(anchors_path) as f:
            anchors = f.readline()
        anchors = [float(x) for x in anchors.split(',')]
        return np.array(anchors).reshape(-1, 2)

    @staticmethod
    def __get_colors(names):
        # 不同的框,不同的颜色
        hsv_tuples = [(float(x) / len(names), 1., 1.)
                      for x in range(len(names))]  # 不同颜色
        colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors))  # RGB
        np.random.seed(10101)
        np.random.shuffle(colors)
        np.random.seed(None)

        return colors

    def generate(self):#
        # 构建检测模型,下载模型数据
        model_path = os.path.expanduser(self.model_path)  # 转换~
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'

        num_anchors = len(self.anchors)  # anchors的数量
        num_classes = len(self.class_names)  # 类别数

        self.yolo_model = yolo_body(Input(shape=(416, 416, 3)), 3, num_classes)
        self.yolo_model.load_weights(model_path)  # 加载模型参数

        print('{} model, {} anchors, and {} classes loaded.'.format(model_path, num_anchors, num_classes))

        # 根据检测参数,过滤框
        self.input_image_shape = K.placeholder(shape=(2,))
        boxes, scores, classes = yolo_eval(
            self.yolo_model.output, self.anchors, len(self.class_names),
            self.input_image_shape, score_threshold=self.score, iou_threshold=self.iou)
        return boxes, scores, classes

    def detect_image(self, image):
        # 检测图片,返回图片
        start = timer()  # 起始时间

        if self.model_image_size != (None, None):  # 416x416, 416=32*13,必须为32的倍数,最小尺度是除以32
            assert self.model_image_size[0] % 32 == 0, 'Multiples of 32 required'
            assert self.model_image_size[1] % 32 == 0, 'Multiples of 32 required'
            boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))  # 填充图像
        else:
            new_image_size = (image.width - (image.width % 32), image.height - (image.height % 32))
            boxed_image = letterbox_image(image, new_image_size)
        image_data = np.array(boxed_image, dtype='float32')
        print('detector size {}'.format(image_data.shape))
        image_data /= 255.  # 转换0~1
        image_data = np.expand_dims(image_data, 0)  # 添加批次维度,将图片增加1维

        # 参数盒子、得分、类别;输入图像0~1,4维;原始图像的尺寸
        # 通过调用yolo_eval: self.boxes, self.scores, self.classes
        out_boxes, out_scores, out_classes = self.sess.run(
            [self.boxes, self.scores, self.classes],
            feed_dict={
                self.yolo_model.input: image_data,
                self.input_image_shape: [image.size[1], image.size[0]],
                K.learning_phase(): 0
            })

        print('Found {} boxes for {}'.format(len(out_boxes), 'img'))  # 检测出的框

        font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
                                  size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))  # 字体
        thickness = (image.size[0] + image.size[1]) // 512  # 厚度
        for i, c in reversed(list(enumerate(out_classes))):
            predicted_class = self.class_names[c]  # 类别
            box = out_boxes[i]  # 框
            score = out_scores[i]  # 执行度

            label = '{} {:.2f}'.format(predicted_class, score)  # 标签
            draw = ImageDraw.Draw(image)  # 画图
            label_size = draw.textsize(label, font)  # 标签文字

            top, left, bottom, right = box
            top = max(0, np.floor(top + 0.5).astype('int32'))
            left = max(0, np.floor(left + 0.5).astype('int32'))
            bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
            right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
            print(label, (left, top), (right, bottom))  # 边框

            if top - label_size[1] >= 0:  # 标签文字
                text_origin = np.array([left, top - label_size[1]])
            else:
                text_origin = np.array([left, top + 1])

            # My kingdom for a good redistributable image drawing library.
            for i in range(thickness):  # 画框
                draw.rectangle(
                    [left + i, top + i, right - i, bottom - i],
                    outline=self.colors[c])
            draw.rectangle(  # 文字背景
                [tuple(text_origin), tuple(text_origin + label_size)],
                fill=self.colors[c])
            draw.text(text_origin, label, fill=(0, 0, 0), font=font)  # 文案
            del draw

        end = timer()
        print(end - start)  # 检测执行时间
        return image

    def detect_objects_of_image(self, img_path):
        # 检测图片返回,box的各个值
        image = Image.open(img_path)
        assert self.model_image_size[0] % 32 == 0, 'Multiples of 32 required'
        assert self.model_image_size[1] % 32 == 0, 'Multiples of 32 required'
        boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))  # 填充图像

        image_data = np.array(boxed_image, dtype='float32')
        image_data /= 255.  # 转换0~1
        image_data = np.expand_dims(image_data, 0)  # 添加批次维度,将图片增加1维
        # print('detector size {}'.format(image_data.shape))

        out_boxes, out_scores, out_classes = self.sess.run(
            [self.boxes, self.scores, self.classes],
            feed_dict={
                self.yolo_model.input: image_data,
                self.input_image_shape: [image.size[1], image.size[0]],
                K.learning_phase(): 0
            })

        # print('out_boxes: {}'.format(out_boxes))
        # print('out_scores: {}'.format(out_scores))
        # print('out_classes: {}'.format(out_classes))

        img_size = image.size[0] * image.size[1]
        # 过滤较小的图片
        objects_line = self._filter_boxes(out_boxes, out_scores, out_classes, img_size)
        return objects_line

    def _filter_boxes(self, boxes, scores, classes, img_size):
        # 过滤较小的图片
        res_items = []
        for box, score, clazz in zip(boxes, scores, classes):
            top, left, bottom, right = box
            box_size = (bottom - top) * (right - left)
            rate = float(box_size) / float(img_size)
            clz_name = self.class_names[clazz]
            if rate > 0.05:
                res_items.append('{}-{:0.2f}'.format(clz_name, rate))
        res_line = ','.join(res_items)
        return res_line

    def close_session(self):
        self.sess.close()

def detect_img_for_test():
    yolo = YOLO()
    img_path = './dataset/vDaPl5QHdoqb2wOaVql4FoJWNGglYk.jpg'
    image = Image.open(img_path)
    r_image = yolo.detect_image(image)
    yolo.close_session()
    r_image.save('xxx.png')

def test_of_detect_objects_of_image():
    yolo = YOLO()
    img_path = './dataset/vDaPl5QHdoqb2wOaVql4FoJWNGglYk.jpg'
    objects_line = yolo.detect_objects_of_image(img_path)
    print(objects_line)

if __name__ == '__main__':
    # detect_img_for_test()
    test_of_detect_objects_of_image()

这是yolo的检测文件,yolo检测模型对外提供两个接口:

  1. detect_image(self, image) 检测图片,返回图片
  2. detect_objects_of_image(self, img_path) 检测图片返回,box的各个值

这里的yolo模型使用的就是model.py文件yolo_eval()函数,这是在模型训练完成之后,最重要的函数,这个文件只导入了yolo_eval和 yolo_body两个函数

from yolo3.model import yolo_eval, yolo_body

参考:

https://github.com/SpikeKing/keras-yolo3-detection
Keras中自定义目标函数(损失函数)的简单方法
Keras中自定义复杂的loss函数

作者:yanghedada
链接:https://www.jianshu.com/p/3fddf7c08a58
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。