conda create -n openmmlab python=3.7 -y
conda activate openmmlab
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorch -y
# install mmcv
pip install mmcv-full==1.4.0 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8/index.html
# install mmdetection
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e .
Download the checkpoint from this link and put it in the {MMDET_ROOT}/checkpoints
where {MMDET_ROOT}
is the root directory of your MMDetection codebase.
在anaconda中运行下列命令来安装MMDeploy
conda activate openmmlab
git clone https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
git submodule update --init --recursive
pip install -e . # 安装MMDeploy
install TensorRT through tar file
After installation, you’d better add TensorRT environment variables to bashrc by
cd /the/path/of/tensorrt/tar/gz/file
tar -zxvf TensorRT-8.2.3.0.Linux.x86_64-gnu.cuda-11.4.cudnn8.2.tar.gz
export TENSORRT_DIR=$(pwd)/TensorRT-8.2.3.0
export LD_LIBRARY_PATH=$TENSORRT_DIR/lib:$LD_LIBRARY_PATH
install cudnn8.2 through tar file
Extract the compressed file and set the environment variables
cd /the/path/of/cudnn/tgz/file
tar -zxvf cudnn-11.3-linux-x64-v8.2.1.32.tgz
export CUDNN_DIR=$(pwd)/cuda
export LD_LIBRARY_PATH=$CUDNN_DIR/lib64:$LD_LIBRARY_PATH
TensorRT Custom Ops
cd ${MMDEPLOY_DIR}
mkdir -p build && cd build
cmake -DCMAKE_CXX_COMPILER=g++-7 <br /> -DMMDEPLOY_TARGET_BACKENDS=trt <br /> -DTENSORRT_DIR=${TENSORRT_DIR} <br /> -DCUDNN_DIR=${CUDNN_DIR} ..
make -j$(nproc)
cd ${MMDEPLOY_DIR}
pip install -e .
python ${MMDEPLOY_DIR}/tools/check_env.py
# 如果正常输出会得到:
# 2022-05-04 10:13:07,140 - mmdeploy - INFO - tensorrt: 8.2.3.0 ops_is_avaliable : True
Once you have installed MMDeploy, you can convert the PyTorch model in the OpenMMLab model zoo to the backend model with one magic spell!
pip show mmdeploy
and pip show mmdet
in your console.python ${MMDEPLOY_DIR}/tools/deploy.py <br />
${MMDEPLOY_DIR}/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py <br />
${MMDET_DIR}/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py <br />
${MMDET_DIR}/checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth <br />
${MMDET_DIR}/demo/demo.jpg <br />
--work-dir work_dirs \ # 转换好的模型保存目录
--device cuda:0 \ # 将cuda:0 更改成cuda???
--show \ # 展示使用后端推理框架,和原来pytorch推理的两张图片
--dump-info # 输出,可用与SDK
At the same time, an onnx model file end2end.onnx
and ene2end.engine
deploy.json detail.json pipeline.json
(SDK config files) will generate on the work directory work_dirs
.
Now you can do model inference with the APIs provided by the backend. But what if you want to test the model instantly? We have some backend wrappers for you.
from mmdeploy.apis import inference_model
deploy_cfg = "/home/zranguai/Deploy/MMDeploy/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py"
model_cfg = "/home/zranguai/Deploy/mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py"
backend_files = ["/home/zranguai/Deploy/MMDeploy/work_dirs/end2end.engine"]
img = "/home/zranguai/Deploy/mmdetection/demo/demo.jpg"
device = 'cuda:0'
result = inference_model(model_cfg, deploy_cfg, backend_files, img=img, device=device)
print(result)
You might wonder that does the backend model have the same precision as the original one? How fast can the model run? MMDeploy provides tools to test the model.
python ${MMDEPLOY_DIR}/tools/test.py <br /> ${MMDEPLOY_DIR}/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py <br /> ${MMDET_DIR}/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py <br /> --model /home/zranguai/Deploy/MMDeploy/work_dirs/end2end.engine <br /> --metrics "bbox" <br /> --device cuda:0
注意: 30系显卡需要将pplcv安装到最新版本。参考issue
cd ${MMDEPLOY_DIR}
mkdir -p build && cd build
cmake -DMMDEPLOY_BUILD_SDK=ON \
-DCMAKE_CXX_COMPILER=g++-7 \
-DMMDEPLOY_BUILD_SDK_PYTHON_API=ON \
-DMMDEPLOY_TARGET_DEVICES="cuda;cpu" \
-DMMDEPLOY_TARGET_BACKENDS=trt \
-Dpplcv_DIR=${PPLCV_DIR}/cuda-build/install/lib/cmake/ppl \ # pplcv到最新版本 A high-performance image processing library of openPPL. ref:https://mmdeploy.readthedocs.io/en/latest/build/linux.html#install-dependencies-for-sdk
-DTENSORRT_DIR=${TENSORRT_DIR} \
-DCUDNN_DIR=${CUDNN_DIR} \
-DOpenCV_DIR=/usr/lib/x86_64-linux-gnu/cmake/opencv4 \
-Dspdlog_DIR=/usr/lib/x86_64-linux-gnu/cmake/spdlog \
-DMMDEPLOY_CODEBASES=mmdet ..
make -j$(nproc) && make install
cd ${MMDEPLOY_DIR}/build/install/example
mkdir -p build && cd build
cmake -DOpenCV_DIR=/usr/lib/x86_64-linux-gnu/cmake/opencv4 \
-DMMDeploy_DIR=${MMDEPLOY_DIR}/build/install/lib/cmake/MMDeploy ..
make object_detection
# suppress verbose logs
export SPDLOG_LEVEL=warn
# running the object detection example
./object_detection cuda ${work_dirs} ${path/to/an/image}
# 例子: ./object_detection cuda ${MMDEPLOY_DIR}/work_dirs ${MMDET_DIR}/demo/demo.jpg
setting中设置:
CMake options:
-DMMDeploy_DIR=/home/zranguai/Deploy/MMDeploy/build/install/lib/cmake/MMDeploy -DTENSORRT_DIR=/home/zranguai/Deploy/Backend/TensorRT/TensorRT-8.2.3.0 -DCUDNN_DIR=/home/zranguai/Deploy/Backend/TensorRT/cuda
Build directory:
/home/zranguai/Deploy/MMDeploy/build/install
Build options:
object_detection
configuation:
cuda /home/zranguai/Deploy/MMDeploy/work_dirs /home/zranguai/Deploy/MMDeploy/demo/demo.jpg
+++++++++++++++++++我是分割线++++++++++++++
Here is an example of how to deploy and inference Faster R-CNN model of MMDetection from scratch.
Please run the following command in Anaconda environment to install MMDetection.
conda create -n openmmlab python=3.7 -y
conda activate openmmlab
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorch -y
# install mmcv
pip install mmcv-full==1.4.0 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8/index.html
# install mmdetection
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e .
Download the checkpoint from this link and put it in the {MMDET_ROOT}/checkpoints
where {MMDET_ROOT}
is the root directory of your MMDetection codebase.
Please run the following command in Anaconda environment to install MMDeploy.
conda activate openmmlab
git clone https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
git submodule update --init --recursive
pip install -e . # 安装MMDeploy
Once we have installed the MMDeploy, we should select an inference engine for model inference. Here we take ONNX Runtime as an example. Run the following command to install ONNX Runtime:
pip install onnxruntime==1.8.1
Then download the ONNX Runtime library to build the mmdeploy plugin for ONNX Runtime:
wget https://github.com/microsoft/onnxruntime/releases/download/v1.8.1/onnxruntime-linux-x64-1.8.1.tgz
tar -zxvf onnxruntime-linux-x64-1.8.1.tgz
cd onnxruntime-linux-x64-1.8.1
export ONNXRUNTIME_DIR=$(pwd)
export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH # 也可将这两句写进~/.bashrc
cd ${MMDEPLOY_DIR} # To MMDeploy root directory
mkdir -p build && cd build
# build ONNXRuntime custom ops
cmake -DMMDEPLOY_TARGET_BACKENDS=ort -DONNXRUNTIME_DIR=${ONNXRUNTIME_DIR} ..
make -j$(nproc)
# build MMDeploy SDK
cmake -DMMDEPLOY_BUILD_SDK=ON \
-DCMAKE_CXX_COMPILER=g++-7 \
-DOpenCV_DIR=/path/to/OpenCV/lib/cmake/OpenCV \ # 这里的opencv安装可参考这里https://mmdeploy.readthedocs.io/en/latest/build/linux.html#install-dependencies-for-sdk
-Dspdlog_DIR=/path/to/spdlog/lib/cmake/spdlog \ # 这里的spdlog安装可参考这里https://mmdeploy.readthedocs.io/en/latest/build/linux.html#install-dependencies-for-sdk
-DONNXRUNTIME_DIR=${ONNXRUNTIME_DIR} \
-DMMDEPLOY_TARGET_BACKENDS=ort \
-DMMDEPLOY_CODEBASES=mmdet ..
make -j$(nproc) && make install
# build MMDeploy SDK具体案例
cmake -DMMDEPLOY_BUILD_SDK=ON \
-DCMAKE_CXX_COMPILER=g++-7 \
-DOpenCV_DIR=/usr/lib/x86_64-linux-gnu/cmake/opencv4 \ # 通过apt-get安装的
-Dspdlog_DIR=/usr/lib/x86_64-linux-gnu/cmake/spdlog \
-DONNXRUNTIME_DIR=${ONNXRUNTIME_DIR} \
-DMMDEPLOY_TARGET_BACKENDS=ort \
-DMMDEPLOY_CODEBASES=mmdet ..
# 其中${MMDEPLOY_DIR} ${MMDET_DIR} ${ONNXRUNTIME_DIR}都可以写在 ~/.bashrc里面然后source ~/.bashrc生效
python ${MMDEPLOY_DIR}/tools/check_env.py
Once we have installed MMDetection, MMDeploy, ONNX Runtime and built plugin for ONNX Runtime, we can convert the Faster R-CNN to a .onnx
model file which can be received by ONNX Runtime. Run following commands to use our deploy tools:
# Assume you have installed MMDeploy in ${MMDEPLOY_DIR} and MMDetection in ${MMDET_DIR}
# If you do not know where to find the path. Just type `pip show mmdeploy` and `pip show mmdet` in your console.
python ${MMDEPLOY_DIR}/tools/deploy.py \
${MMDEPLOY_DIR}/configs/mmdet/detection/detection_onnxruntime_dynamic.py \
${MMDET_DIR}/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
${MMDET_DIR}/checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
${MMDET_DIR}/demo/demo.jpg \
--work-dir work_dirs \ # 转换好的模型保存目录
--device cpu \
--show \ # 展示使用后端推理框架,和原来pytorch推理的两张图片
--dump-info # 输出方便,可用与SDK
# 补充
# ${MMDEPLOY_DIR}和${MMDET_DIR}已经写进了~/.bashrc
# 转换好了模型可以通过python接口进行推理
例如: Inference Model
Now you can do model inference with the APIs provided by the backend. But what if you want to test the model instantly? We have some backend wrappers for you.
from mmdeploy.apis import inference_model
result = inference_model(model_cfg, deploy_cfg, backend_files, img=img, device=device)
If the script runs successfully, two images will display on the screen one by one. The first image is the infernce result of ONNX Runtime and the second image is the result of PyTorch. At the same time, an onnx model file end2end.onnx
and three json files (SDK config files) will generate on the work directory work_dirs
.
After model conversion, SDK Model is saved in directory ${work_dir}.
Here is a recipe for building & running object detection demo.
cd build/install/example
# path to onnxruntime ** libraries **
export LD_LIBRARY_PATH=/path/to/onnxruntime/lib
# 例子: export LD_LIBRARY_PATH=/home/zranguai/Deploy/Backend/ONNXRuntime/onnxruntime-linux-x64-1.8.1/lib
mkdir -p build && cd build
cmake -DOpenCV_DIR=path/to/OpenCV/lib/cmake/OpenCV \
-DMMDeploy_DIR=${MMDEPLOY_DIR}/build/install/lib/cmake/MMDeploy ..
make object_detection
# 例子:
# cmake -DOpenCV_DIR=/usr/lib/x86_64-linux-gnu/cmake/opencv4 \
# -DMMDeploy_DIR=${MMDEPLOY_DIR}/build/install/lib/cmake/MMDeploy ..
# suppress verbose logs
export SPDLOG_LEVEL=warn
# running the object detection example
./object_detection cpu ${work_dirs} ${path/to/an/image}
# 例子: ./object_detection cpu ${MMDEPLOY_DIR}/work_dirs ${MMDET_DIR}/demo/demo.jpg
If the demo runs successfully, an image named "output_detection.png" is supposed to be found showing detection objects.
++++++++++++++++++++++++++++++++分割线++++++
conda create -n openmmlab python=3.7 -y
conda activate openmmlab
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorch -y
# install mmcv
pip install mmcv-full==1.4.0 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8/index.html
# install mmdetection
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e .
Download the checkpoint from this link and put it in the {MMDET_ROOT}/checkpoints
where {MMDET_ROOT}
is the root directory of your MMDetection codebase.
在anaconda中运行下列命令来安装MMDeploy
conda activate openmmlab
git clone https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
git submodule update --init --recursive
pip install -e . # 安装MMDeploy
pip install openvino-dev
Optional. If you want to use OpenVINO in MMDeploy SDK, please install and configure it by following the guild
OpenVINO安装
tar -xvzf l_openvino_toolkit_p_2020.4.287.tgz
cd l_openvino_toolkit_p_2020.4.287
sudo ./install_GUI.sh 一路next安装
cd /opt/intel/openvino/install_dependencies
sudo ./install_openvino_dependencies.sh
vi ~/.bashrc
把如下几行放置到 bashrc 文件尾
source /opt/intel/openvino_2021/bin/setupvars.sh # 注意找到是自己的路径
export INTEL_OPENVINO_DIR=/opt/intel/openvino_2021
export LD_LIBRARY_PATH=/opt/intel/openvino_2021/deployment_tools/inference_engine/lib/intel64
source ~/.bashrc 激活环境
模型优化配置步骤
cd /opt/intel/openvino_2021/deployment_tools/model_optimizer/install_prerequisites
sudo ./install_prerequisites.sh # 可以只安装onnx的
cd ${MMDEPLOY_DIR} # To MMDeploy root directory
mkdir -p build && cd build
cmake -DMMDEPLOY_BUILD_SDK=ON \
-DCMAKE_CXX_COMPILER=g++-7 \
-DOpenCV_DIR=/path/to/OpenCV/lib/cmake/OpenCV \
-Dspdlog_DIR=/path/to/spdlog/lib/cmake/spdlog \
-DInferenceEngine_DIR=${INTEL_OPENVINO_DIR}/deployment_tools/inference_engine/share \
-DMMDEPLOY_TARGET_BACKENDS=openvino \
-DMMDEPLOY_CODEBASES=mmdet ..
make -j$(nproc) && make install
# build MMDeploy SDK具体案例
cmake -DMMDEPLOY_BUILD_SDK=ON \
-DCMAKE_CXX_COMPILER=g++-7 \
-DOpenCV_DIR=/usr/lib/x86_64-linux-gnu/cmake/opencv4 \ # 这里设置apt-get下载的opencv
-Dspdlog_DIR=/usr/lib/x86_64-linux-gnu/cmake/spdlog \
-DInferenceEngine_DIR=${INTEL_OPENVINO_DIR}/deployment_tools/inference_engine/share \
-DMMDEPLOY_TARGET_BACKENDS=openvino \
-DMMDEPLOY_CODEBASES=mmdet ..
# ${INTEL_OPENVINO_DIR}写进了~/.bashrc
python ${MMDEPLOY_DIR}/tools/check_env.py
# 当把这个export LD_LIBRARY_PATH=/opt/intel/openvino_2021/deployment_tools/inference_engine/lib/intel64写进~/.bashrc里面时候,会导致出现libopencv_ml.so.4.5: cannot open shared object file: No such file or directory ??
# Assume you have installed MMDeploy in ${MMDEPLOY_DIR} and MMDetection in ${MMDET_DIR}
# If you do not know where to find the path. Just type `pip show mmdeploy` and `pip show mmdet` in your console.
python ${MMDEPLOY_DIR}/tools/deploy.py \
${MMDEPLOY_DIR}/configs/mmdet/detection/detection_openvino_dynamic-300x300.py \
${MMDET_DIR}/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
${MMDET_DIR}/checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
${MMDET_DIR}/demo/demo.jpg \
--work-dir work_dirs \ # 转换好的模型保存目录
--device cpu \
--show \ # 展示使用后端推理框架,和原来pytorch推理的两张图片
--dump-info # 输出,可用与SDK
# 补充
# ${MMDEPLOY_DIR}和${MMDET_DIR}已经写进了~/.bashrc
# 转换好了模型可以通过python接口进行推理
例如: Inference Model
Now you can do model inference with the APIs provided by the backend. But what if you want to test the model instantly? We have some backend wrappers for you.
from mmdeploy.apis import inference_model
result = inference_model(model_cfg, deploy_cfg, backend_files, img=img, device=device)
例子:
deploy_cfg = "/home/zranguai/Deploy/MMDeploy/configs/mmdet/detection/detection_openvino_dynamic-300x300.py"
model_cfg = "/home/zranguai/Deploy/mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py"
backend_files = [ "/home/zranguai/Deploy/MMDeploy/work_dirs/end2end.xml",]
img = "/home/zranguai/Deploy/mmdetection/demo/demo.jpg"
device = 'cpu'
from mmdeploy.apis import visualize_model
visualize_model(model_cfg, deploy_cfg, backend_files[0], img, device, show_result=True)
python ${MMDEPLOY_DIR}/tools/check_env.pyIf the script runs successfully, two images will display on the screen one by one. The first image is the infernce result of OpenVINO and the second image is the result of PyTorch. At the same time, an onnx model file end2end.onnx
and ene2end.bin(contains the weights and biases binary data) end2end.xml(describes the networks topology) end2end.mapping deploy.json detail.json pipeline.json
(SDK config files) will generate on the work directory work_dirs
.
After model conversion, SDK Model is saved in directory ${work_dir}.
Here is a recipe for building & running object detection demo.
cd build/install/example
# path to openvino ** libraries **
export LD_LIBRARY_PATH=/path/to/onnxruntime/lib/intel64
# 例子: export LD_LIBRARY_PATH=/opt/intel/openvino_2021/deployment_tools/inference_engine/lib/intel64
mkdir -p build && cd build
cmake -DOpenCV_DIR=path/to/OpenCV/lib/cmake/OpenCV \ # openvino中opencv路径
-DMMDeploy_DIR=${MMDEPLOY_DIR}/build/install/lib/cmake/MMDeploy ..
make object_detection
# 例子2:
# cmake -DOpenCV_DIR=/opt/intel/openvino_2021/opencv/cmake \
# -DMMDeploy_DIR=${MMDEPLOY_DIR}/build/install/lib/cmake/MMDeploy ..
# suppress verbose logs
export SPDLOG_LEVEL=warn
# running the object detection example
./object_detection cpu ${work_dirs} ${path/to/an/image}
# 例子: ./object_detection cpu ${MMDEPLOY_DIR}/work_dirs ${MMDET_DIR}/demo/demo.jpg
# 可能出现的错误: 上面导出的xml的name: torch-jit-export version="11",解决: 重新安装就好了
If the demo runs successfully, an image named "output_detection.png" is supposed to be found showing detection objects.
手机扫一扫
移动阅读更方便
你可能感兴趣的文章