mysql-kettle-superset电商可视化数据分析
阅读原文时间:2023年07月09日阅读:2

1、项目概述

对电商业务中的用户、商品、订单的数据进行分析,观察运营的情况

业务数据库:Mysql:存储最原始的数据

ETL:Kettle

数据仓库:Mysql:存储需要进行分析处理的数据

分析处理:SQL/Kettle

可视化:Superset


2、准备工作

linux系统

VMware虚拟机——安装linux操作系统

1 Windows版下载地址:
2 https://www.vmware.com/

finalshell——远程操作系统

Windows版下载地址:
http://www.hostbuf.com/downloads/finalshell_install.exe
Mac版,Linux版安装及教程:
http://www.hostbuf.com/t/1059.html

mysql——数据库(安装版和压缩包版)

1 Windows版下载地址:
2 https://www.mysql.com//downloads/

datagrip——数据库管理工具

链接:https://pan.baidu.com/s/1K1pPIX9uZiAKOAiFgHMlnw
提取码:lhr4

Navicat——数据库管理工具

链接:https://pan.baidu.com/s/1eaW3CMhen_7X5sjVgs7enw
提取码:fqov

kettle——如有安装问题请自行度娘

1、Kettle的下载与安装(本文使用kettle版本为pdi-ce-7.1.0.0-12)点击下载地址官方网站

superset——有问题请度娘

linux环境安装依赖
yum upgrade python-setuptools
yum install -y gcc gcc-c++ libffi-devel python-devel python-pip python-wheel openssl-devel libsasl2-devel openldap-devel
安装superset
supersetcd /root/anaconda3/
pip install email_validator -i https://pypi.douban.com/simple
pip install superset==0.30.0 -i https://pypi.douban.com/simple

3、数据环境

将这段sql代码下载运行,生成数据库,表格

链接:https://pan.baidu.com/s/1uVYISah6hYkBqiyhIk407w
提取码:sfdm

通过kettle将业务数据抽取到数据分析的数据库中

链接:https://pan.baidu.com/s/1shH0zexh3WraQnMt17n-SA
提取码:ao7n

生成表格——kettle操作略

mysql> use itcast_shop_bi;

Database changed
mysql> show tables;
+--------------------------+
| Tables_in_itcast_shop_bi |
+--------------------------+
| ods_itcast_good_cats |商品分类表
| ods_itcast_goods |商品表
| ods_itcast_order_goods |订单及详情表
| ods_itcast_orders |订单表
| ods_itcast_users |用户表
| ods_itcast_area      |行政区域表 ________+--------------------------+__

3、自动化构建抽取实现

1、地区表以及商品分类表的自动抽取

2、商品表、订单表、订单详情表、用户表

3、设置定时自动运行

4、数据分析

需求1

需求:统计 2019-09-05 订单支付的总金额、订单的总笔数

演变:统计每天的订单支付的总金额和订单的总笔数

指标:总金额、订单总笔数

维度:天

-- 创建结果表
use itcast_shop_bi;
create table app_order_total(
id int primary key auto_increment,
dt date,
total_money double,
total_cnt int
);

-- 将分析的结果保存到结果表
insert into app_order_total
select
null,
substring(createTime,1,10) as dt,-- 2019-09-05这一天的日期
round(sum(realTotalMoney),2) as total_money, -- 分组后这一天的所有订单总金额
count(orderId) as total_cnt -- 分组后这一天的订单总个数
from
ods_itcast_orders
where
substring(createTime,1,10) = '2019-09-05'
group by
substring(createTime,1,10);

-- 表结构及内容
mysql> desc app_order_user;
+----------------+------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------------+------+------+-----+---------+----------------+
| id | int | NO | PRI | NULL | auto_increment |
| dt | date | YES | | NULL | |
| total_user_cnt | int | YES | | NULL | |
+----------------+------+------+-----+---------+----------------+
3 rows in set (0.00 sec)

mysql> select * from app_order_user;
+----+------------+----------------+
| id | dt | total_user_cnt |
+----+------------+----------------+
| 1 | 2019-09-05 | 11 |
| 2 | 2019-09-05 | 11 |
+----+------------+----------------+
2 rows in set (0.01 sec)

需求2

需求:统计2019-09-05当天所有下单的用户总数

演变:统计订单表中2019-09-05这一天的所有订单的用户id的个数

-- 创建结果表
use itcast_shop_bi;
create table app_order_user(
id int primary key auto_increment,
dt date,
total_user_cnt int
);

-- 插入结果数据
insert into app_order_user
select
null,
substring(createTime,1,10) as dt,-- 2019-09-05这一天的日期
count(distinct userId) as total_user_cnt
from
ods_itcast_orders
where
substring(createTime,1,10) = '2019-09-05'
group by
substring(createTime,1,10);

需求3

需求;每天不同支付方式订单总额/订单笔数分析

指标:订单总额、订单总笔数

维度:时间维度【天】、支付方式维度

-- 创建结果表
create table app_order_paytype(
id int primary key auto_increment,
dt date,
pay_type varchar(20),
total_money double,
total_cnt int
);

-- 插入结果数据
insert into app_order_paytype
select
null,
substring(createTime,1,10) as dt,-- 获取每一天的日期
case payType when 1 then '支付宝' when 2 then '微信' when 3 then '现金' else '其他' end as pay_type,
round(sum(realTotalMoney),2) as total_money, -- 分组后这一天的所有订单总金额
count(orderId) as total_cnt -- 分组后这一天的订单总个数
from
ods_itcast_orders
group by
substring(createTime,1,10),payType;

需求4

需求;统计2019年9月下订单最多的用户TOP5,也就是前5名

方式一:上面考虑的是简单的情况,只获取订单个数最多的前5个人

select
date_format(dt,'%Y-%m') as dt,
userId,
userName,
count(orderId) as total_cnt
from
ods_itcast_orders
where
date_format(dt,'%Y-%m') = '2019-09'
group by
date_format(dt,'%Y-%m'),userId,userName
order by
total_cnt desc
limit 5;

方式二:我们希望得到订单个数最多的排名的前5名,如果个数相同排名相同

select
*
from (
select *,
dense_rank() over (partition by dt order by total_cnt desc) as rn
from (
select date_format(dt, '%Y-%m') as dt,
userId,
userName,
count(orderId) as total_cnt
from ods_itcast_orders
where date_format(dt, '%Y-%m') = '2019-09'
group by date_format(dt, '%Y-%m'), userId, userName
) tmp1
) tmp2 where rn < 6;

需求5

需求:统计不同分类的订单总金额以及订单总笔数【类似于统计不同支付类型的订单总金额和总笔数】

-- 创建结果表
use itcast_shop_bi;
drop table if exists app_order_goods_cat;
create table app_order_goods_cat(
id int primary key auto_increment,
dt date,
cat_name varchar(20),
total_money double,
total_num int
);
-- step2:先构建三级分类与一级分类之间的关系
-- 使用join实现
drop table if exists tmp_goods_cats;
create temporary table tmp_goods_cats as
select
t3.catId as t3Id,-- 三级分类id
t3.catName as t3Name, -- 三级分类名称
t2.catId as t2Id,
t2.catName as t2Name,
t1.catId as t1Id,
t1.catName as t1Name
from
ods_itcast_good_cats t3 join ods_itcast_good_cats t2 on t3.parentId = t2.catId
join ods_itcast_good_cats t1 on t2.parentId = t1.catId;

CREATE UNIQUE INDEX idx_goods_cat3 ON tmp_goods_cats(t3Id);
CREATE UNIQUE INDEX idx_itheima_goods ON ods_itcast_goods(goodsId);
CREATE INDEX idx_itheima__order_goods ON ods_itcast_order_goods(goodsId);

-- 插入结果数据
insert into app_order_goods_cat
select
null,
substring(c.createtime,1,10) as dt,
a.t1Name,
sum(c.payPrice) as total_money,
count(distinct orderId) as total_num
from
tmp_goods_cats a left join ods_itcast_goods b on a.t3Id = b.goodsCatId
left join ods_itcast_order_goods c on b.goodsId = c.goodsId
where
substring(c.createtime,1,10) = '2019-09-05'
group by
substring(c.createtime,1,10),a.t1Name;


5、构建自动化Kettle作业实现自动化分析

6、可视化构建

7、构建看板


手机扫一扫

移动阅读更方便

阿里云服务器
腾讯云服务器
七牛云服务器

你可能感兴趣的文章