Flink-读Kafka写Hive表
阅读原文时间:2023年08月30日阅读:5

使用Flink读取Kafka数据并实时写入Hive表。

EMR环境:Hadoop 3.3.3, Hive 3.1.3, Flink 1.16.0

根据官网描述:

https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/connectors/table/hive/overview/

当前Flink 1.16.0 支持Hive 3.1.3版本,如果是开发,则需要加入依赖有:

org.apache.flink flink-connector-hive_2.12 1.16.0 provided

// Hive dependencies
org.apache.hive hive-exec 3.1.3

在读写hive表时,预先条件是注册hive catalog:

// set hive dialect
tableEnv.getConfig().setSqlDialect(SqlDialect.HIVE)

// set hive catalog
tableEnv.executeSql("CREATE CATALOG myhive WITH (" +
"'type' = 'hive'," +
"'default-database' = 'default'," +
"'hive-conf-dir' = 'hiveconf'" +
")")

tableEnv.executeSql("use catalog myhive")

然后创建hive表:

// hive table
tableEnv.executeSql("CREATE TABLE IF NOT EXISTS hive_table (" +
"id string," +
"`value` float," +
"hashdata string," +
"num integer," +
"token string," +
"info string," +
"ts timestamp " +
") " +
"PARTITIONED BY (dt string, hr string) STORED AS ORC TBLPROPERTIES (" +
// "'path'='hive-output'," +
"'partition.time-extractor.timestamp-pattern'='$dt $hr:00:00'," +
"'sink.partition-commit.policy.kind'='metastore,success-file'," +
"'sink.partition-commit.trigger'='partition-time'," +
"'sink.partition-commit.delay'='0 s'" +
" )")

参考官方文档:

https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/connectors/datastream/kafka/

添加对应依赖:


org.apache.flink flink-connector-kafka ${flink.version}

flinksql参考代码:

package com.tang.hive

import org.apache.flink.api.java.utils.ParameterTool
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.SqlDialect
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment

object Kafka2Hive {

/***
* create hive table
* @param tbl_env
* @param drop
* @param hiveConfDir
* @param database
* @return
*/
def buildHiveTable(tbl_env: StreamTableEnvironment,
drop: Boolean,
hiveConfDir: String,
database: String,
tableName: String,
dbLocation: String) = {
// set hive dialect
tbl_env.getConfig().setSqlDialect(SqlDialect.HIVE)

// set hive catalog  
tbl\_env.executeSql("CREATE CATALOG myhive WITH (" +  
  "'type' = 'hive'," +  
  "'default-database' = '"+ database + "'," +  
  "'hive-conf-dir' = '" + hiveConfDir + "'" +  
  ")")  
tbl\_env.executeSql("use catalog myhive")

// whether drop hive table first  
if (drop) {  
  // drop first  
  tbl\_env.executeSql("drop table if exists" + tableName)  
}

val sql = "CREATE TABLE IF NOT EXISTS " + tableName + "(" +  
  "id string," +  
  "\`value\` float," +  
  "hashdata string," +  
  "num integer," +  
  "token string," +  
  "info string," +  
  "ts timestamp " +  
  ") " +  
  "PARTITIONED BY (dt string, hr string) STORED AS ORC " +  
  "LOCATION '" + dbLocation + "/" + tableName +"' TBLPROPERTIES (" +  
  "'partition.time-extractor.timestamp-pattern'='$dt $hr:00:00'," +  
  "'sink.partition-commit.policy.kind'='metastore,success-file'," +  
  "'sink.partition-commit.trigger'='partition-time'," +  
  "'sink.partition-commit.watermark-time-zone'='Asia/Shanghai'," +  
  "'sink.partition-commit.delay'='0 s'," +  
  "'auto-compaction'='true'" +  
  " )"

// hive table  
tbl\_env.executeSql(sql)  

}

/***
* create kafka table
* @param tbl_env
* @param drop
* @param bootstrapServers
* @param topic
* @param groupId
* @return
*/
def buildKafkaTable(tbl_env: StreamTableEnvironment,
drop: Boolean,
bootstrapServers: String,
topic: String,
groupId: String,
tableName: String) = {
// set to default dialect
tbl_env.getConfig.setSqlDialect(SqlDialect.DEFAULT)

if (drop) {  
  tbl\_env.executeSql("drop table if exists " + tableName)  
}

// kafka table  
tbl\_env.executeSql("CREATE TABLE IF NOT EXISTS "+ tableName + " (" +  
  "id string," +  
  "\`value\` float," +  
  "hashdata string," +  
  "num integer," +  
  "token string," +  
  "info string," +  
  "created\_timestamp bigint," +  
  "ts AS TO\_TIMESTAMP( FROM\_UNIXTIME(created\_timestamp) ), " +  
  "WATERMARK FOR ts AS ts - INTERVAL '5' SECOND "+  
  " )" +  
  "with (" +  
  " 'connector' = 'kafka'," +  
  " 'topic' = '" + topic + "'," +  
  " 'properties.bootstrap.servers' = '" + bootstrapServers +"'," +  
  " 'properties.group.id' = '" + groupId + "'," +  
  " 'scan.startup.mode' = 'latest-offset'," +  
  " 'format' = 'json'," +  
  " 'json.fail-on-missing-field' = 'false'," +  
  " 'json.ignore-parse-errors' = 'true'" +  
  ")" )

}

def main(args: Array\[String\]): Unit = {  
  val senv = StreamExecutionEnvironment.getExecutionEnvironment  
  val tableEnv = StreamTableEnvironment.create(senv)

  // set checkpoint  
  // senv.enableCheckpointing(60000);  
  //senv.getCheckpointConfig.setCheckpointStorage("file://flink-hive-chk");

  // get parameter  
  val tool: ParameterTool = ParameterTool.fromArgs(args)  
  val hiveConfDir = tool.get("hive.conf.dir", "src/main/resources")  
  val database = tool.get("database", "default")  
  val hiveTableName = tool.get("hive.table.name", "hive\_tbl")  
  val kafkaTableName = tool.get("kafka.table.name", "kafka\_tbl")  
  val bootstrapServers = tool.get("bootstrap.servers", "b-2.cdc.62vm9h.c4.kafka.ap-northeast-1.amazonaws.com:9092,b-1.cdc.62vm9h.c4.kafka.ap-northeast-1.amazonaws.com:9092,b-3.cdc.62vm9h.c4.kafka.ap-northeast-1.amazonaws.com:9092")  
  val groupId = tool.get("group.id", "flinkConsumer")  
  val reset = tool.getBoolean("tables.reset", false)  
  val topic = tool.get("kafka.topic", "cider")  
  val hiveDBLocation = tool.get("hive.db.location", "s3://tang-emr-tokyo/flink/kafka2hive/")

  buildHiveTable(tableEnv, reset, hiveConfDir, database, hiveTableName, hiveDBLocation)  
  buildKafkaTable(tableEnv, reset, bootstrapServers, topic, groupId, kafkaTableName)

  // select from kafka table and write to hive table  
  tableEnv.executeSql("insert into " + hiveTableName + " select id, \`value\`, hashdata, num, token, info, ts, DATE\_FORMAT(ts, 'yyyy-MM-dd'), DATE\_FORMAT(ts, 'HH') from " + kafkaTableName)

}

}

Kafka写入数据格式:

{"id": "35f1c5a8-ec19-4dc3-afa5-84ef6bc18bd8", "value": 1327.12, "hashdata": "0822c055f097f26f85a581da2c937895c896200795015e5f9e458889", "num": 3, "token": "800879e1ef9a356cece14e49fb6949c1b8c1862107468dc682d406893944f2b6", "info": "valentine", "created_timestamp": 1690165700}

5.1. 代码配置说明

Hive表的部分配置:

"'sink.partition-commit.policy.kind'='metastore,success-file',"
=》在分区完成写入后,如何通知下游“分区数据已经可读”。目前支持metastore和success-file

"'sink.partition-commit.trigger'='partition-time',"
=》什么时候触发partition commit。Partition-time表示在watermark超过了“分区时间”+“delay”的时间后,commit partition

"'sink.partition-commit.delay'='0 s'"
=》延迟这个时间后再commit分区

'sink.partition-commit.watermark-time-zone'='Asia/Shanghai'
=》时区必须与数据时间戳一致

"'auto-compaction'='true'"
=》开启文件合并,在落盘前先合并

通过checkponit来决定落盘频率
senv.enableCheckpointing(60000);

在这个配置下,每1分钟会做一次checkpoint,即将文件写入s3。同时,还会触发自动合并的动作,最终每1分钟生成1个orc文件。

5.2. 提交job

参考flink官网:

需要移除flink-table-planner-loader-1.16.0.jar,并移入flink-table-planner_2.12-1.16.0:

cd /usr/lib/flink/lib
sudo mv flink-table-planner-loader-1.16.0.jar ../

sudo wget https://repo1.maven.org/maven2/org/apache/flink/flink-table-planner_2.12/1.16.0/flink-table-planner_2.12-1.16.0.jar

sudo chown flink:flink flink-table-planner_2.12-1.16.0.jar
sudo chmod +x flink-table-planner_2.12-1.16.0.jar

然后主节点运行:
sudo cp /usr/lib/hive/lib/antlr-runtime-3.5.2.jar /usr/lib/flink/lib
sudo cp /usr/lib/hive/lib/hive-exec-3.1.3*.jar /lib/flink/lib
sudo cp /usr/lib/hive/lib/libfb303-0.9.3.jar /lib/flink/lib
sudo cp /usr/lib/flink/opt/flink-connector-hive_2.12-1.16.0.jar /lib/flink/lib

sudo chmod 755 /usr/lib/flink/lib/antlr-runtime-3.5.2.jar
sudo chmod 755 /usr/lib/flink/lib/hive-exec-3.1.3*.jar
sudo chmod 755 /usr/lib/flink/lib/libfb303-0.9.3.jar
sudo chmod 755 /usr/lib/flink/lib/flink-connector-hive_2.12-1.16.0.jar

上传hive配置文件到hdfs:

hdfs dfs -mkdir /user/hadoop/hiveconf/
hdfs dfs -put /etc/hive/conf/hive-site.xml /user/hadoop/hiveconf/hive-site.xml

Emr主节点提交job:

flink run-application \
-t yarn-application \
-c com.tang.hive.Kafka2Hive \
-p 8 \
-D state.backend=rocksdb \
-D state.checkpoint-storage=filesystem \
-D state.checkpoints.dir=s3://tang-emr-tokyo/flink/kafka2hive/checkpoints \
-D execution.checkpointing.interval=60000 \
-D state.checkpoints.num-retained=5 \
-D execution.checkpointing.mode=EXACTLY_ONCE \
-D execution.checkpointing.externalized-checkpoint-retention=RETAIN_ON_CANCELLATION \
-D state.backend.incremental=true \
-D execution.checkpointing.max-concurrent-checkpoints=1 \
-D rest.flamegraph.enabled=true \
flink-tutorial.jar \
--hive.conf.dir hdfs:///user/hadoop/hiveconf \
--reset true

5.1. 文件数量与大小

从写入基于s3的hive表来看,基本是1分钟2个文件(因为超出了默认rolling配置的128MB文件大小,所以会额外再写1个文件)。同时,未compaction的文件对下游不可见:

5.2. hive分区注册

从hive表来看,写入数据后默认在hive元数据内注册了新分区。

S3路径:

Hive分区:

5.3. 可见的最近数据

从hive查询结果来看,下游能查询到的数据为最近1分钟之前的数据:

select current_timestamp, ts from hive_tbl order by ts desc limit 10;

2023-07-27 09:25:24.193 2023-07-27 09:24:24
2023-07-27 09:25:24.193 2023-07-27 09:24:24
2023-07-27 09:25:24.193 2023-07-27 09:24:24
2023-07-27 09:25:24.193 2023-07-27 09:24:24