Hyperparameter tuning
阅读原文时间:2023年07月15日阅读:1

超参数调整

详细可以参考官方文档

在拟合模型之前需要定义好的参数

  • Linear regression: Choosing parameters
  • Ridge/lasso regression: Choosing alpha
  • k-Nearest Neighbors: Choosing n_neighbors
  • Parameters like alpha and k: Hyperparameters
  • Hyperparameters cannot be learned by tting the model

sklearn.model_selection.GridSearchCV

  • 超参数自动搜索模块

  • 网格搜索+交叉验证

  • 指定的参数范围内,按步长依次调整参数,利用调整的参数训练学习器,从所有的参数中找到在验证集上精度最高的参数,这其实是一个训练和比较的过程

    class sklearn.model_selection.GridSearchCV(estimator, param_grid, scoring=None, n_jobs=None, iid='deprecated', refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score=nan, return_train_score=False

参数

  • estimator:模型对象

  • param_grid:dict or list of dictionaries,字典类型的参数,定义一个字典然后都放进去

  • scoring:string, callable, list/tuple, dict or None, default: None,就是metrics,损失函数定义rmse,mse等

  • Number of jobs to run in parallel. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details.控制cop,core并行运行数量

    -cv:int, cross-validation generator or an iterable, optional,k折交叉验证数,默认5折

    • Determines the cross-validation splitting strategy. Possible inputs for cv are:
    • None, to use the default 5-fold cross validation,integer, to specify the number of folds in a (Stratified)KFold,CV splitter,
    • An iterable yielding (train, test) splits as arrays of indices.
    • For integer/None inputs, if the estimator is a classifier and y is either binary or multiclass, StratifiedKFold is used. In all other cases, KFold is used.
  • verbose:控制输出信息的详细程度,愈高输出越多。

属性

常见:

  • cv_results_dict of numpy (masked) ndarrays输出交叉验证的每一个结果

  • best_estimator_:最好的估计器

  • best_params_:dict

    • 返回最优模型参数
    • Parameter setting that gave the best results on the hold out data.
    • For multi-metric evaluation, this is present only if refit is specified.
  • best_score_:float

    • 返回最优模型参数的得分
    • Mean cross-validated score of the best_estimator
    • For multi-metric evaluation, this is present only if refit is specified.
    • This attribute is not available if refit is a function.

    Import necessary modules

    from sklearn.model_selection import GridSearchCV

    from sklearn.linear_model import LogisticRegression

    Setup the hyperparameter grid

    创建一个参数集

    c_space = np.logspace(-5, 8, 15)

    这里是创建一个字典保存参数集

    param_grid = {'C': c_space}

    Instantiate a logistic regression classifier: logreg

    针对回归模型进行的超参数调整

    logreg = LogisticRegression()

    Instantiate the GridSearchCV object: logreg_cv

    logreg_cv = GridSearchCV(logreg, param_grid, cv=5)

    Fit it to the data

    logreg_cv.fit(X,y)

    Print the tuned parameters and score

    得到最好的模型

    print("Tuned Logistic Regression Parameters: {}".format(logreg_cv.best_params_))

    得到最好的模型的最好的结果

    print("Best score is {}".format(logreg_cv.best_score_))

    output:
    Tuned Logistic Regression Parameters: {'C': 3.727593720314938}
    Best score is 0.7708333333333334

GridSearchCV can be computationally expensive, especially if you are searching over a large hyperparameter space and dealing with multiple hyperparameters. A solution to this is to use RandomizedSearchCV, in which not all hyperparameter values are tried out. Instead, a fixed number of hyperparameter settings is sampled from specified probability distributions.

grid相当于一个for循环,会遍历每一个参数,因此,当调参很多的时候,会导致计算量非常的大,因此,使用随机抽样的随机搜索会好一些

RandomizedSearchCV的使用方法其实是和GridSearchCV一致的,但它以随机在参数空间中采样的方式代替了GridSearchCV对于参数的网格搜索,在对于有连续变量的参数时,RandomizedSearchCV会将其当作一个分布进行采样这是网格搜索做不到的,它的搜索能力取决于设定的n_iter参数,同样的给出代码

csdn

RandomizedSearchCV

  • 随机搜索法

  • 不是每一个参数都被选取,而是从指定概率分布的参数中,抽取一定量的参数

    我还是没太能明白?

    可以比较一下时间

比较网格搜索而言,参数略有不同

算了,还是都列一下常见的吧,剩下的可以参照官方文档

比Grid 多了一个属性

  • .cv_results_,可以交叉验证的每一轮的结果

    Import necessary modules

    from scipy.stats import randint
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import RandomizedSearchCV

    Setup the parameters and distributions to sample from: param_dist

    以决策树为例,注意定一个字典的形式哦

    param_dist = {"max_depth": [3, None],
    "max_features": randint(1, 9),
    "min_samples_leaf": randint(1, 9),
    "criterion": ["gini", "entropy"]}

    Instantiate a Decision Tree classifier: tree

    tree = DecisionTreeClassifier()

    Instantiate the RandomizedSearchCV object: tree_cv

    tree_cv = RandomizedSearchCV(tree, param_dist, cv=5)

    Fit it to the data

    tree_cv.fit(X,y)

    Print the tuned parameters and score

    print("Tuned Decision Tree Parameters: {}".format(tree_cv.best_params_))
    print("Best score is {}".format(tree_cv.best_score_))

    output:
    Tuned Decision Tree Parameters: {'criterion': 'gini', 'max_depth': 3, 'max_features': 5, 'min_samples_leaf': 2}
    Best score is 0.7395833333333334

调参的限制点

  • grid:

    -random:

手机扫一扫

移动阅读更方便

阿里云服务器
腾讯云服务器
七牛云服务器