stream 是一个用来处理集合个数组的api
jdk 8 引入strream的原因:1.去掉for循环,使编程变的更加简单(实际运行效率可能没有for循环高)2.parallel,多核友好,java函数式编程使得编写并行程序如此简单,你需要的仅仅是调用一下parallel()方法
stream的特性: 1.不是数据结构,没有内存存储 2.不支持索引(没有数据,类似于spark中的RDD,只是搭建计算框架,在最后执行时才执行整个流程) 3.延迟计算 4.支持并行 5.很容易生成数组和集合 6.支持过滤查找转化等多种操作
Stream分为 源source,中间操作,终止操作 流的源可以是一个数组、一个集合、一个生成器方法,一个I/O通 道等等。 一个流可以有零个和或者多个中间操作,每一个中间操作都会返回 一个新的流,供下一个操作使用。一个流只会有一个终止操作 Stream只有遇到终止操作,它的源才开始执行遍历操作
1、通过数组 2、通过集合来 3、通过Stream.generate方法来创建 4、通过Stream.iterate方法来创建 5、其他API创建
创建stream对象,of 方法中,参数为:(T… ..values) 可看做是一个多个同种类型对象组成的集合,forEach()方法,参数为:(Consumer super T>action),即一个Consumer接口,泛型为调用Stream中所装载的对象的父类或者自己,比如下面,调用对象为Stream
public static void common_fileInputStream() throws IOException {
String[] arr = {"a", "b", "c", "d", "e", "f", "g", "h"};
Student stu = new Student("q");
Stream
Stream
Consumer
@Override
public void accept(Object o) {
System.out.println("o = " + o);
}
};
student.forEach(consumer);/**参数:(Consumer super T> action)*/
// stud.forEach(consumer);
}
中间操作: 过滤 filter 去重 distinct 排序 sorted 截取 limit、skip 转换 map/flatMap 其他 peek
终止操作: 循环 forEach 计算 min、max、count、 average 匹配 anyMatch、 allMatch、 noneMatch、 findFirst、 findAny 汇聚 reduce 收集器 toArray collec
List
Stream stream = Stream.of(list);
/**写法一*/
/*Consumerconsumer=new Consumer
() {
@Override
public void accept(List list) {
System.out.println("list = " + list);
}
};
stream.forEach(consumer);*/
// Consumer consumer = (arr) -> System.out.println(arr);
/**写法二*/
stream.forEach((arr) -> System.out.println(arr));
/\*\*写法三\*/
Consumer<List> consumer = System.out::println;
/\*\*函数式接口对应实例对象的方法的引用\*/
//stream.forEach(System.out::println);
上述代码中,写法一为常规操作,写法二使用了通常的lanbad表达式,写法三中使用了实例对象引用方法的模式,无论哪种,都没有手动调用Consumer的默认方法accept方法,个人理解forEach中应该有对该方法的默认调用,并且在调用时传入了参数。
@Test
public void createStream(){
/**方法一,通过集合和数组创建*/
List
lis.add("a");lis.add("b");lis.add("c");
/**数组*/
List
Streamstream1=Stream.of(lis);
/\*\*方法二,通过generate方式创建\*/
Stream<Integer>sin=Stream.generate(()->1);
/\*\*这种创建的方式创建出来的流时无限的,需要limit做限制\*/
sin.limit(3).forEach(System.out::println);
/\*\*输出结果:1,1,1\*/
/\*\*方法三,使用迭代器方式创建\*/
Stream<Integer>str=Stream.iterate(0,x->x+1);
str.limit(2).forEach(System.out::println);
/\*\*創建方法4\*/
String string="abc";
IntStream intStream=string.chars();
intStream.forEach(System.out::println);
/\*\*輸出結果:97,98,99,即hashcode碼值\*/
}
1排序,使用排序的时候需要注意排序的值为null的情况
@Test
public void streamCommonTest() {
/**排序功能*/
String arr[] = {"baierhu", "zhaowenb", "cheng", "2"};
Stream
//List list= str.sorted().collect(Collectors.toList());
//System.out.println("arrr = " + list);
/**输出结果:默认为字典排序:arrr = [2, baierhu, cheng, zhaowenb]*/
List list1=str.sorted(new Comparator<String>() {
@Override
public int compare(String o1, String o2) {
return o1.length()-o2.length();
}
}).collect(Collectors.toList());
System.out.println(list1);
/\*\*输出结果:按照长度排序\*/
Student \[\] stu={new Student(1,"baierhu"),new Student(2,"zwen"),new Student(null,"aaa"),new Student(null,"chaochao")} ;
/\*\*Stream.of(stu).sorted(new Comparator<Student>() {
@Override
public int compare(Student o1, Student o2) {
return o1.getName().length()-o2.getName().length();
}
}).collect(Collectors.toList()).forEach(System.out::println);\*/
// 输出结果:Student{id=2, name='zwen'}
//Student{id=1, name='baierhu'}
//Student{id=null, name='chaochao'}
List<Student>lis=Stream.of(stu).sorted((a,b)->a.getName().length()-b.getName().length()).collect(Collectors.toList());
System.out.println("lis = " + lis);
List<Student>lis111=Stream.of(stu).sorted((a,b)->{
if(a.getId()==null && b.getId()==null) return 0;
else if(a.getId()==null) return 0-b.getId();
else if(b.getId()==null) return a.getId()-0;
else return a.getId()-b.getId();}).collect(Collectors.toList());
System.out.println("lis111 = " + lis111);
/\*\*输出:lis111 = \[Student{id=null, name='aaa'}, Student{id=null, name='chaochao'}, Student{id=1, name='baierhu'}, Student{id=2, name='zwen'}\]\*/
}
@Test
public void buildTest(){
/\*\*build,个人理解可以用add方法多添加几个东西至Stream\*/
String arr\[\] = {"baierhu", "zhaowenb", "cheng", "2"};
Stream.Builder builder = Stream.builder().add(arr);
builder.build().forEach((a)->{
String aa\[\]=(String\[\])a;
System.out.println(Arrays.toString(aa));
});
}
/**输出:[baierhu, zhaowenb, cheng, 2]*/
@Test
public void buildFilter(){
/**build,个人理解可以用add方法多添加几个东西至Stream*/
String arr[] = {"baierhu", "zhaowenb", "cheng", "2"};
Stream
Predicate
@Override
public boolean test(String s) {
if(s.length()>4) return true;
return false;
}
};
/**方法一*/
List
System.out.println("ob = " + aa);
/**方法二,简单写法*/
List
System.out.println(bb);
}
/**输出:[baierhu, zhaowenb]*/
//创建数据
List
listUser.add(new User("李白", 20, true));
listUser.add(new User("杜甫", 40, true));
listUser.add(new User("李清照", 18, false));
listUser.add(new User("李商隐", 23, true));
listUser.add(new User("杜牧", 39, true));
listUser.add(new User("苏小妹", 16, false));
这个User就是一个普通的Bean对象,有name(姓名)、age(年龄)、gender(性别)三个属性及对应的set/get方法。
从 joining 方法的定义可以看到,这里重载了3个 joining 方法:无参数,1个参数,3个参数。然后从参数命名上看delimiter-分隔符、prefix-前缀、suffix-后缀大约可以猜出参数的作用了,然后再看注释的参数说明
Returns a {@code Collector} that concatenates the input elements,separated by the specified delimiter, with the specified prefix and suffix, in encounter order.
将指定的值join成字符串
String join1 = listUser.stream().map(User::getName).collect(Collectors.joining());
System.out.println("join后的结果:" + join1); // 输出==》 李白杜甫李清照李商隐杜牧苏小妹
将List中的用户名join成中间用","分隔的字符串
String join2 = listUser.stream().map(User::getName).collect(Collectors.joining(","));
System.out.println("join后的结果:" + join2); // 输出==》李白,杜甫,李清照,李商隐,杜牧,苏小妹
将List中的用户名join成以前缀是"{",后缀是"}",中间用","分隔的字符串
String join3 = listUser.stream().map(User::getName).collect(Collectors.joining(",", "{", "}"));
System.out.println("join后的结果:" + join3); // 输出==》{李白,杜甫,李清照,李商隐,杜牧,苏小妹}
方法有2个参数,Function类型的mapper和Collector类型的downstream。通过注释可以看到方法是通过参数mapper函数来处理List中的每一个数据,然后用downstream来将处理后的数据收集起来。举例说明:
取出List中所有人的姓名放到一个新的List中去
// 定义一个入参为User,返回String的函数
Function
return user.getName();
};
List
以上代码再简写一下:
List
或者:
List
以上mapping 和joining转载于:https://blog.csdn.net/u012843361/article/details/83090199
转载于:https://blog.csdn.net/u014231523/article/details/102535902
public Product(Long id, Integer num, BigDecimal price, String name, String category) {
this.id = id;
this.num = num;
this.price = price;
this.name = name;
this.category = category;
}
Product prod1 = new Product(1L, 1, new BigDecimal("15.5"), "面包", "零食");
Product prod2 = new Product(2L, 2, new BigDecimal("20"), "饼干", "零食");
Product prod3 = new Product(3L, 3, new BigDecimal("30"), "月饼", "零食");
Product prod4 = new Product(4L, 3, new BigDecimal("10"), "青岛啤酒", "啤酒");
Product prod5 = new Product(5L, 10, new BigDecimal("15"), "百威啤酒", "啤酒");
List
按照类目分组:
Map
//{"啤酒":[{"category":"啤酒","id":4,"name":"青岛啤酒","num":3,"price":10},{"category":"啤酒","id":5,"name":"百威啤酒","num":10,"price":15}],"零食":[{"category":"零食","id":1,"name":"面包","num":1,"price":15.5},{"category":"零食","id":2,"name":"饼干","num":2,"price":20},{"category":"零食","id":3,"name":"月饼","num":3,"price":30}]}
按照几个属性拼接分组:
Map
//{"零食_月饼":[{"category":"零食","id":3,"name":"月饼","num":3,"price":30}],"零食_面包":[{"category":"零食","id":1,"name":"面包","num":1,"price":15.5}],"啤酒_百威啤酒":[{"category":"啤酒","id":5,"name":"百威啤酒","num":10,"price":15}],"啤酒_青岛啤酒":[{"category":"啤酒","id":4,"name":"青岛啤酒","num":3,"price":10}],"零食_饼干":[{"category":"零食","id":2,"name":"饼干","num":2,"price":20}]}
根据不同条件分组
Map
if(item.getNum() < 3) {
return "3";
}else {
return "other";
}
}));
//{"other":[{"category":"零食","id":3,"name":"月饼","num":3,"price":30},{"category":"啤酒","id":4,"name":"青岛啤酒","num":3,"price":10},{"category":"啤酒","id":5,"name":"百威啤酒","num":10,"price":15}],"3":[{"category":"零食","id":1,"name":"面包","num":1,"price":15.5},{"category":"零食","id":2,"name":"饼干","num":2,"price":20}]}
多级分组
要实现多级分组,我们可以使用一个由双参数版本的Collectors.groupingBy工厂方法创 建的收集器,它除了普通的分类函数之外,还可以接受collector类型的第二个参数。那么要进 行二级分组的话,我们可以把一个内层groupingBy传递给外层groupingBy,并定义一个为流 中项目分类的二级标准。
Map
if(item.getNum() < 3) {
return "3";
}else {
return "other";
}
})));
//{"啤酒":{"other":[{"category":"啤酒","id":4,"name":"青岛啤酒","num":3,"price":10},{"category":"啤酒","id":5,"name":"百威啤酒","num":10,"price":15}]},"零食":{"other":[{"category":"零食","id":3,"name":"月饼","num":3,"price":30}],"3":[{"category":"零食","id":1,"name":"面包","num":1,"price":15.5},{"category":"零食","id":2,"name":"饼干","num":2,"price":20}]}}
求总数
Map
//{"啤酒":2,"零食":3}
求和
Map
//{"啤酒":13,"零食":6}
把收集器的结果转换为另一种类型
Map
//{"啤酒":{"category":"啤酒","id":5,"name":"百威啤酒","num":10,"price":15},"零食":{"category":"零食","id":3,"name":"月饼","num":3,"price":30}}
联合其他收集器
Map
//{"啤酒":["青岛啤酒","百威啤酒"],"零食":["面包","饼干","月饼"]}
转载于:https://zhangzw.com/posts/20191205.html
// 简单对象
@Accessors(chain = true) // 链式方法
@lombok.Data
class User {
private String id;
private String name;
}
然后有这样一个 List:
List
new User().setId("A").setName("张三"),
new User().setId("B").setName("李四"),
new User().setId("C").setName("王五")
);
我们希望转成 Map 的格式为:
A-> 张三
B-> 李四
C-> 王五
过去的做法(循环):
Map
for (User user : userList) {
map.put(user.getId(), user.getName());
}
jdk 1.8
userList.stream().collect(Collectors.toMap(User::getId, User::getName));
当然,如果希望得到 Map 的 value 为对象本身时,可以这样写:
userList.stream().collect(Collectors.toMap(User::getId, t -> t));
或:
userList.stream().collect(Collectors.toMap(User::getId, Function.identity()));
Collectors.toMap 有三个重载方法:
toMap(Function super T, ? extends K> keyMapper, Function super T, ? extends U> valueMapper);
toMap(Function super T, ? extends K> keyMapper, Function super T, ? extends U> valueMapper,
BinaryOperator mergeFunction);
toMap(Function super T, ? extends K> keyMapper, Function super T, ? extends U> valueMapper,
BinaryOperator mergeFunction, Supplier
参数含义分别是:
keyMapper:Key 的映射函数
valueMapper:Value 的映射函数
mergeFunction:当 Key 冲突时,调用的合并方法
mapSupplier:Map 构造器,在需要返回特定的 Map 时使用
还是用上面的例子,如果 List 中 userId 有相同的,使用上面的写法会抛异常:
List
new User().setId("A").setName("张三"),
new User().setId("A").setName("李四"), // Key 相同
new User().setId("C").setName("王五")
);
userList.stream().collect(Collectors.toMap(User::getId, User::getName));
// 异常:
java.lang.IllegalStateException: Duplicate key 张三
at java.util.stream.Collectors.lambda$throwingMerger$114(Collectors.java:133)
at java.util.HashMap.merge(HashMap.java:1245)
at java.util.stream.Collectors.lambda$toMap$172(Collectors.java:1320)
at java.util.stream.ReduceOps$3ReducingSink.accept(ReduceOps.java:169)
at java.util.ArrayList$ArrayListSpliterator.forEachRemaining(ArrayList.java:1374)
at java.util.stream.AbstractPipeline.copyInto(AbstractPipeline.java:481)
at java.util.stream.AbstractPipeline.wrapAndCopyInto(AbstractPipeline.java:471)
at java.util.stream.ReduceOps$ReduceOp.evaluateSequential(ReduceOps.java:708)
at java.util.stream.AbstractPipeline.evaluate(AbstractPipeline.java:234)
at java.util.stream.ReferencePipeline.collect(ReferencePipeline.java:499)
at Test.toMap(Test.java:17)
…
这时就需要调用第二个重载方法,传入合并函数,如:
userList.stream().collect(Collectors.toMap(User::getId, User::getName, (n1, n2) -> n1 + n2));
// 输出结果:
A-> 张三李四
C-> 王五
第四个参数(mapSupplier)用于自定义返回 Map 类型,比如我们希望返回的 Map 是根据 Key 排序的,可以使用如下写法:
List
new User().setId("B").setName("张三"),
new User().setId("A").setName("李四"),
new User().setId("C").setName("王五")
);
userList.stream().collect(
Collectors.toMap(User::getId, User::getName, (n1, n2) -> n1, TreeMap::new)
);
// 输出结果:
A-> 李四
B-> 张三
C-> 王五
List
.flatMap(employees -> employees.stream())
.flatMapToLong(employee -> LongStream.of(employee.getId()))
.boxed()
.collect(Collectors.toList());
System.out.println("listFlatLong = " + listFlatLong);
当有双层时,比如List>或者List
如果使用的是map方法,返回的是[ …['y', 'o', 'u', 'r'], ['n', 'a', 'm', 'e']]
如果使用的是flatMap方法,返回的是['y', 'o', 'u', 'r', 'n', 'a', 'm', 'e']
这是map和flatMap的区别
手机扫一扫
移动阅读更方便
你可能感兴趣的文章