UVA11174村民排队问题
阅读原文时间:2023年07月08日阅读:1

**题意:

     有n个人要排队,给你一些父子关系,要求儿子不能站在自己的父亲前面,问有多少种排队方式?

思路:

      白书上的题目,首先我们可以把关系建成树,这样我们就有可能得到一个森林(或者是一课树),然后我们再虚拟出来一个点0连接所有森林的根节点,这样是为了保证是一棵树,然后题目就变成了给你一棵树,不改变关系,问这个树有多少种方式,这个还是排列组合问题,对于每一个根节点,有这样的性质

root[i] = f[1]*f[2]*..f[k]   *  (s[i]-1)!/s[1]!*s[2]!*..s[k]! 

f[1]..f[k]表示的当前根节点连接的k个儿子为根节点的树的排列个数,s[i]表示的是以i为根节点的这棵树的所有节点个数,上面的式子可以理解成这样

f[1]*f[2]*..f[k] 所有儿子为根节点的排列个数

(s[i] - 1)! 表示的是以i为根的这棵树的所有节点数-1(不算跟所以-1)的排列方式

//s[1]!*s[2]!*..s[k]!  相当于全排列去掉重复部分,因为每一棵树已经*f[]了,不能在*了,不能再*那就可以理解成重复部分了,所以…,然后把每一个公式都化简,会发现分子剩1,分母剩s[i]了,(可以理解成分子的f[i]和分母的s[i]!约),这样最后剩下的是

((n+1)-1)/s1*s2*..sn;

最后的公式是

Ans = n!/(s1*s2*s3*s4…*sn) si是以i为根节点的子树的节点数

这样就可以了,然后这样会设计到一个问题,那就是大数相除取余的问题,我知道应该有至少两种方法解决这个问题,一个是逆元,另一个是a/b%c = a * pow(b ,c - 2) % c,这个不解释了,可以自己去网上找学习,哎!想起了亚洲赛那道排列组合题,当时在赛场上怎么也想不起来大数相除的转换了,sb了!

#include

#include

#define MOD 1000000007

#define N_node 40000 + 10

#define N_edge 40000 + 10

typedef struct

{

   int to ,next;

}STAR;

STAR E[N_node];

long long sum[N_node];

long long jc[N_node];

int list[N_node] ,tot;

int du[N_node];

void add(int a ,int b)

{

   E[++tot].to = b;

   E[tot].next = list[a];

   list[a] = tot;

}

int DFS(int now)

{

   int s = 1;

   for(int k = list[now] ;k ;k = E[k].next)

   {

      s += DFS(E[k].to);

   }

   sum[now] = s;

   return s;

}

long long Pow(long long a ,long long b)

{

   long long c = 1;

   while(b)

   {

      if(b & 1) c *= a;

      b >>= 1;

      a *= a;

      a = a % MOD;

      c = c % MOD;

   }

   return c;

}

void DB()

{

   long long now = 1;

   for(long long i = 1 ;i <= 40000 ;i ++)

   {

      now = now * i % MOD;

      jc[i] = now;

   }

}

   

int main ()

{

   int n ,m ,i ,a ,b ,t;

   DB();

   scanf("%d" ,&t);

   while(t--)

   {

      scanf("%d %d" ,&n ,&m);

      memset(list ,0 ,sizeof(list)) ,tot = 1;

      memset(du ,0 ,sizeof(du));

      for(i = 1 ;i <= m ;i ++)

      {

         scanf("%d %d" ,&a ,&b);

         add(b ,a);

         du[a] ++;

      }

      for(i = 1 ;i <= n ;i ++)

      if(!du[i]) add(0 ,i);

      memset(sum ,0 ,sizeof(sum));

      DFS(0);

      long long Ans = jc[n];

      for(i = 1 ;i <= n ;i ++)

      {

          Ans = Ans * Pow(sum[i] ,MOD - 2) % MOD;

      }

      printf("%lld\n" ,Ans);

   }

   return 0;

}**