用apply处理pandas比用for循环,快了无数倍,测试如下:
我们有一个pandas加载的dataframe如下,features是0和1特征的组合,可惜都是str形式(字符串形式),我们要将其转换成一个装有整型int 0和1的list
(1)用for循坏(耗时约3小时)
1 from tqdm import tqdm #计时器函数
2 for i in tqdm(range(df.shape[0])):
3 df['features'][i] = df['features'][i].split(",") #每一行形如0,0,1,1,0,1,1的string,所以按照逗号切割,返回一个list
4 for j in range(len(df['features'][i])): #遍历该list,对于每个元素进行int转换
5 df['features'][i][j] = int(df['features'][i][j])
6
7 print(type(df['features'][0]))
(2)推荐用apply方法(耗时约30秒)
1 from time import time
2 from tqdm import tqdm
3
4 def func(x):
5 l = x.split(",")
6 for i in range(len(l)):
7 l[i] = int(l[i])
8 return l
9
10 stime = time()
11 df['new_features'] = df['features'].apply(func)
12 endtime = time()
13
14 print("time:"+str(endtime-stime)+"s")
15 #df.head()
16 print("over")
手机扫一扫
移动阅读更方便
你可能感兴趣的文章