「学习笔记」CDQ分治
阅读原文时间:2023年08月30日阅读:4

CDQ 分治的思想最早由 IOI2008 金牌得主陈丹琦在高中时整理并总结,目前这个思想的拓展十分广泛。

  • 优点:可以将数据结构或者 DP 优化掉一维
  • 缺点:这是离线算法。

让我们来看一个问题

有 $ n $ 个元素,第 $ i $ 个元素有 $ a_i,b_i,c_i $ 三个属性,设 $ f(i) $ 表示满足 $ a_j \leq a_i $ 且 $ b_j \leq b_i $ 且 $ c_j \leq c_i $ 且 $ j \ne i $ 的 \(j\) 的数量。

对于 $ d \in [0, n) $,求 $ f(i) = d $ 的数量。

$ 1 \leq n \leq 10^5$,$1 \leq a_i, b_i, c_i \le k \leq 2 \times 10^5 $。

这是一个三维偏序问题。

偏序问题:给定序列 \(A\),其中有序对 \((A_i, A_j)\),满足 \(i < j\) 且 \(A_i < A_j\) 这样的有序对我们称之为逆序对, 信息学竞赛中的逆序对问题,一般是要我们计数给出序列的逆序对个数的总和。其实可以把它看成一个特殊的二维偏序问题,或者说是离散化 \(x\) 坐标的二维偏序问题。

而 CDQ 分治,可以来解决三维偏序问题。

上面的引入问题就是模板题 P3810 【模板】三维偏序(陌上花开) 的题意。

变量及其含义

struct node {
    int x, y, z, cnt, ans;
} s1[N], s2[N];

x, y, z: 三个元素。

cnt:相同元素的个数。

ans:统计答案。


对于第一维 \(a\),我们可以先从小到大 sort 一遍,\(i\) 号点前面的点的 \(a\) 都比 \(a_i\) 小,这样我们就减少了一维的处理,还剩下两维。

bool cmp1(node a, node b) {
    if (a.x == b.x) {
        if (a.y == b.y) {
            return a.z < b.z;
        }
        else return a.y < b.y;
    }
    return a.x < b.x;
}
// main() 函数里面
n = read<int>(), k = read<int>();
mx = k;
for (int i = 1, x, y, z; i <= n; ++ i) {
    x = read<int>(), y = read<int>(), z = read<int>();
    s1[i].x = x, s1[i].y = y, s1[i].z = z;
}
sort(s1 + 1, s1 + n + 1, cmp1);

排完序后,我们可以将相同的元素合并为一个元素,结构体里的 cnt 就派上用场了。

int top = 0;
for (int i = 1; i <= n; ++ i) {
    ++ top;
    if (s1[i].x != s1[i + 1].x || s1[i].y != s1[i + 1].y || s1[i].z != s1[i + 1].z) {
        s2[++ m].x = s1[i].x;
        s2[m].y = s1[i].y;
        s2[m].z = s1[i].z;
        s2[m].cnt = top;
        top = 0;
    }
}

然后处理第二维,对于第二维,我们要求 \(b_j \leq b_i\),按照前面的思路,我们肯定也要想方设法给第二维排序。

我们可以用 归并排序 的思想,先分别给左半个区间和右半个区间按照第二维从小到大排序,然后依次处理,由于是在 \(a\) 排好序的基础上进行的在排序,且这两个的区间还没有合并,所以无论怎么打乱,都可以保证左半边元素的 \(a\) 小于等于右半边元素的 \(a\)

对于第三维,相当于到了我们找逆序对的环节了,我们有归并排序和树状数组两种方法,但由于归并排序已经放到前面去处理第二维了,所以我们用树状数组来处理第三维,将节点依次插入树状数组,统计。

bool cmp2(node a, node b) {
    if (a.y == b.y) {
        return a.z < b.z;
    }
    return a.y < b.y;
}

void add(int u, int w) {
    for (int i = u; i <= mx; i += lowbit(i)) {
        t[i] += w;
    }
}

int ask(int u) {
    int sum = 0;
    for (int i = u; i; i -= lowbit(i)) {
        sum += t[i];
    }
    return sum;
}

void cdq(int l, int r) {
    if (l == r) return ;
    int mid = (l + r) >> 1;
    cdq(l, mid);
    cdq(mid + 1, r);
    sort(s2 + l, s2 + mid + 1, cmp2);
    sort(s2 + mid + 1, s2 + r + 1, cmp2);
    int i, j = l;
    for (i = mid + 1; i <= r; ++ i) {
        while (s2[i].y >= s2[j].y && j <= mid) { // 一旦不符合,先统计,然后右指针右移一位。
            add(s2[j].z, s2[j].cnt); // 插入
            ++ j;
        }
        s2[i].ans += ask(s2[i].z);
    }
    for (i = l; i < j; ++ i) { // 清空数组,memset 常数太大。
        add(s2[i].z, -s2[i].cnt);
    }
}

最后就是处理答案了,完整代码:

/*
  The code was written by yifan, and yifan is neutral!!!
 */

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define lowbit(i) (i & (-i))

template<typename T>
inline T read() {
    T x = 0;
    bool fg = 0;
    char ch = getchar();
    while (ch < '0' || ch > '9') {
        fg |= (ch == '-');
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9') {
        x = (x << 3) + (x << 1) + (ch ^ 48);
        ch = getchar();
    }
    return fg ? ~x + 1 : x;
}

const int N = 1e5 + 5;

int n, k, mx, m;
int t[N << 1], res[N];

struct node {
    int x, y, z, cnt, ans;
} s1[N], s2[N];

bool cmp1(node a, node b) {
    if (a.x == b.x) {
        if (a.y == b.y) {
            return a.z < b.z;
        }
        else return a.y < b.y;
    }
    return a.x < b.x;
}

bool cmp2(node a, node b) {
    if (a.y == b.y) {
        return a.z < b.z;
    }
    return a.y < b.y;
}

void add(int u, int w) {
    for (int i = u; i <= mx; i += lowbit(i)) {
        t[i] += w;
    }
}

int ask(int u) {
    int sum = 0;
    for (int i = u; i; i -= lowbit(i)) {
        sum += t[i];
    }
    return sum;
}

void cdq(int l, int r) {
    if (l == r) return ;
    int mid = (l + r) >> 1;
    cdq(l, mid);
    cdq(mid + 1, r);
    sort(s2 + l, s2 + mid + 1, cmp2);
    sort(s2 + mid + 1, s2 + r + 1, cmp2);
    int i, j = l;
    for (i = mid + 1; i <= r; ++ i) {
        while (s2[i].y >= s2[j].y && j <= mid) {
            add(s2[j].z, s2[j].cnt);
            ++ j;
        }
        s2[i].ans += ask(s2[i].z);
    }
    for (i = l; i < j; ++ i) {
        add(s2[i].z, -s2[i].cnt);
    }
}

int main() {
    n = read<int>(), k = read<int>();
    mx = k;
    for (int i = 1, x, y, z; i <= n; ++ i) {
        x = read<int>(), y = read<int>(), z = read<int>();
        s1[i].x = x, s1[i].y = y, s1[i].z = z;
    }
    sort(s1 + 1, s1 + n + 1, cmp1);
    int top = 0;
    for (int i = 1; i <= n; ++ i) {
        ++ top;
        if (s1[i].x != s1[i + 1].x || s1[i].y != s1[i + 1].y || s1[i].z != s1[i + 1].z) {
            s2[++ m].x = s1[i].x;
            s2[m].y = s1[i].y;
            s2[m].z = s1[i].z;
            s2[m].cnt = top;
            top = 0;
        }
    }
    cdq(1, m);
    for (int i = 1; i <= m; ++ i) {
        res[s2[i].ans + s2[i].cnt - 1] += s2[i].cnt;
    }
    for (int i = 0; i < n; ++ i) {
        printf("%d\n", res[i]);
    }
    return 0;
}

一道比较好的入门题。统计答案的时候稍微麻烦一些。

/*
  The code was written by yifan, and yifan is neutral!!!
 */

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

template<typename T>
inline T read() {
    T x = 0;
    bool fg = 0;
    char ch = getchar();
    while (ch < '0' || ch > '9') {
        fg |= (ch == '-');
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9') {
        x = (x << 3) + (x << 1) + (ch ^ 48);
        ch = getchar();
    }
    return fg ? ~x + 1 : x;
}

const int N = 5e4 + 5;

int n;
ll ans;

struct node {
    ll v, x;
} g[N];

bool cmp1(node a, node b) {
    return a.v < b.v;
}

bool cmp2(node a, node b) {
    return a.x < b.x;
}

void cdq(int l, int r) {
    if (l == r) return ;
    int mid = (l + r) >> 1;
    cdq(l, mid);
    cdq(mid + 1, r);
    sort(g + l, g + mid + 1, cmp2);
    sort(g + mid + 1, g + r + 1, cmp2);
    ll sum1 = 0, sum2 = 0;
    for (int i = l; i <= mid; ++ i) {
        sum2 += g[i].x;
    }
    for (int i = mid + 1, j = l; i <= r; ++ i) {
        while (j <= mid && g[j].x < g[i].x) {
            sum1 += g[j].x;
            sum2 -= g[j].x;
            ++ j;
        }
        int cnt1 = j - l, cnt2 = mid - j + 1;
        ans = ans + (cnt1 * g[i].x - sum1 + sum2 - cnt2 * g[i].x) * g[i].v;
    }
}

int main() {
    n = read<int>();
    for (int i = 1; i <= n; ++ i) {
        ll v = read<ll>(), x = read<ll>();
        g[i] = node{v, x};
    }
    sort(g + 1, g + n + 1, cmp1);
    cdq(1, n);
    cout << ans << '\n';
    return 0;
}