Pytorch可视化指定层(Udacity)
阅读原文时间:2023年07月08日阅读:3

import cv2
import matplotlib.pyplot as plt
%matplotlib inline

TODO: Feel free to try out your own images here by changing img_path

to a file path to another image on your computer!

img_path = 'images/udacity_sdc.png'

load color image

bgr_img = cv2.imread(img_path)

convert to grayscale

gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)

normalize, rescale entries to lie in [0,1]

gray_img = gray_img.astype("float32")/255

plot image

plt.imshow(gray_img, cmap='gray')
plt.show()

显示图像

定义滤波器,并将其可视化

import numpy as np

TODO: Feel free to modify the numbers here, to try out another filter!

filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])

print('Filter shape: ', filter_vals.shape)

Filter shape: (4, 4)

# Defining four different filters,

all of which are linear combinations of the `filter_vals` defined above

define four filters

filter_1 = filter_vals
filter_2 = -filter_1
filter_3 = filter_1.T
filter_4 = -filter_3
filters = np.array([filter_1, filter_2, filter_3, filter_4])

For an example, print out the values of filter 1

print('Filter 1: \n', filter_1)

Filter 1: [[-1 -1 1 1] [-1 -1 1 1] [-1 -1 1 1] [-1 -1 1 1]]

定义卷积层和池化层

将卷积层初始化,使其包含你所创建的所有滤波器。然后添加一个最大池化层(相关文档请通过点击这里查阅),内核大小为(4x4),这样你就可以看到,在这一步之后,图像分辨率已经降低了!

import torch
import torch.nn as nn
import torch.nn.functional as F

define a neural network with a convolutional layer with four filters

AND a pooling layer of size (4, 4)

class Net(nn.Module):

def \_\_init\_\_(self, weight):  
    super(Net, self).\_\_init\_\_()  
    # initializes the weights of the convolutional layer to be the weights of the 4 defined filters  
    k\_height, k\_width = weight.shape\[2:\]  
    # assumes there are 4 grayscale filters  
    self.conv = nn.Conv2d(1, 4, kernel\_size=(k\_height, k\_width), bias=False)  
    self.conv.weight = torch.nn.Parameter(weight)  
    # define a pooling layer  
    self.pool = nn.MaxPool2d(4, 4)

def forward(self, x):  
    # calculates the output of a convolutional layer  
    # pre- and post-activation  
    conv\_x = self.conv(x)  
    activated\_x = F.relu(conv\_x)

    # applies pooling layer  
    pooled\_x = self.pool(activated\_x)

    # returns all layers  
    return conv\_x, activated\_x, pooled\_x

instantiate the model and set the weights

weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)
model = Net(weight)

print out the layer in the network

print(model)

Net(
(conv): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1), bias=False)
(pool): MaxPool2d(kernel_size=4, stride=4, padding=0, dilation=1, ceil_mode=False)
)

将每个滤波器的输出可视化

首先,我们将定义一个辅助函数viz_layer,它会接收一个特定的层和多个滤波器(可选参数)作为输入,并在图像通过后显示该层的输出。

# helper function for visualizing the output of a given layer

default number of filters is 4

def viz_layer(layer, n_filters= 4):
fig = plt.figure(figsize=(20, 20))

for i in range(n\_filters):  
    ax = fig.add\_subplot(1, n\_filters, i+1, xticks=\[\], yticks=\[\])  
    # grab layer outputs  
    ax.imshow(np.squeeze(layer\[0,i\].data.numpy()), cmap='gray')  
    ax.set\_title('Output %s' % str(i+1))

让我们看一下应用ReLu激活函数后,该卷积层的输出是什么。

# plot original image
plt.imshow(gray_img, cmap='gray')

visualize all filters

fig = plt.figure(figsize=(12, 6))
fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)
for i in range(4):
ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[])
ax.imshow(filters[i], cmap='gray')
ax.set_title('Filter %s' % str(i+1))

convert the image into an input Tensor

gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)

get all the layers

conv_layer, activated_layer, pooled_layer = model(gray_img_tensor)

visualize the output of the activated conv layer

viz_layer(activated_layer)

将池化层的输出可视化

然后,看一下池化层的输出。池化层将上面描绘的特征映射图作为输入,并通过一些池化因子,通过在一个给定内核区域中构造一个仅拥有最大(即最亮)值的新的较小图像来减少那些映射图的维度。

# visualize the output of the pooling layer
viz_layer(pooled_layer)