1 ==> 接受消息,org.apache.spark.executor.CoarseGrainedExecutorBackend#receive
case LaunchTask(data) =>
if (executor == null) {
exitExecutor(1, "Received LaunchTask command but executor was null")
} else {
val taskDesc = TaskDescription.decode(data.value)
logInfo("Got assigned task " + taskDesc.taskId)
executor.launchTask(this, taskDesc)
}
2. ==> org.apache.spark.executor.Executor#launchTask
// Maintains the list of running tasks.
private val runningTasks = new ConcurrentHashMap[Long, TaskRunner]
def launchTask(context: ExecutorBackend, taskDescription: TaskDescription): Unit = {
val tr = new TaskRunner(context, taskDescription)
runningTasks.put(taskDescription.taskId, tr)
threadPool.execute(tr)
}
3. ==>org.apache.spark.executor.Executor.TaskRunner#run
override def run(): Unit = {
threadId = Thread.currentThread.getId
Thread.currentThread.setName(threadName)
val threadMXBean = ManagementFactory.getThreadMXBean
val taskMemoryManager = new TaskMemoryManager(env.memoryManager, taskId)
//下载依赖
updateDependencies(taskDescription.addedFiles, taskDescription.addedJars)
//反序列化得到真正的 task
task = ser.deserialize[Task[Any]](taskDescription.serializedTask, Thread.currentThread.getContextClassLoader)
task.localProperties = taskDescription.properties
task.setTaskMemoryManager(taskMemoryManager)
val value = Utils.tryWithSafeFinally {
val res = task.run(
taskAttemptId = taskId,
attemptNumber = taskDescription.attemptNumber,
metricsSystem = env.metricsSystem)
threwException = false
res
} {
val releasedLocks = env.blockManager.releaseAllLocksForTask(taskId)
val freedMemory = taskMemoryManager.cleanUpAllAllocatedMemory()
}
//处理执行结果
val resultSer = env.serializer.newInstance()
val beforeSerialization = System.currentTimeMillis()
val valueBytes = resultSer.serialize(value)
val afterSerialization = System.currentTimeMillis()
// Note: accumulator updates must be collected after TaskMetrics is updated
val accumUpdates = task.collectAccumulatorUpdates()
// TODO: do not serialize value twice
val directResult = new DirectTaskResult(valueBytes, accumUpdates)
val serializedDirectResult = ser.serialize(directResult)
val resultSize = serializedDirectResult.limit()
// directSend = sending directly back to the driver
val serializedResult: ByteBuffer = {
if (maxResultSize > 0 && resultSize > maxResultSize) {
logWarning(s"Finished $taskName (TID $taskId). Result is larger than maxResultSize " +
s"(${Utils.bytesToString(resultSize)} > ${Utils.bytesToString(maxResultSize)}), " +
s"dropping it.")
ser.serialize(new IndirectTaskResult\[Any\](TaskResultBlockId(taskId), resultSize))
} else if (resultSize > maxDirectResultSize) {
val blockId = TaskResultBlockId(taskId)
env.blockManager.putBytes(
blockId,
new ChunkedByteBuffer(serializedDirectResult.duplicate()),
StorageLevel.MEMORY\_AND\_DISK\_SER)
logInfo(
s"Finished $taskName (TID $taskId). $resultSize bytes result sent via BlockManager)")
ser.serialize(new IndirectTaskResult\[Any\](blockId, resultSize))
} else {
logInfo(s"Finished $taskName (TID $taskId). $resultSize bytes result sent to driver")
serializedDirectResult
}
}
setTaskFinishedAndClearInterruptStatus()
execBackend.statusUpdate(taskId, TaskState.FINISHED, serializedResult)
}
==> org.apache.spark.executor.Executor#updateDependencies
/**
* Download any missing dependencies if we receive a new set of files and JARs from the
* SparkContext. Also adds any new JARs we fetched to the class loader.
*/
private def updateDependencies(newFiles: Map[String, Long], newJars: Map[String, Long]) {
lazy val hadoopConf = SparkHadoopUtil.get.newConfiguration(conf)
synchronized {
// Fetch missing dependencies
for ((name, timestamp) <- newFiles if currentFiles.getOrElse(name, -1L) < timestamp) {
logInfo("Fetching " + name + " with timestamp " + timestamp)
// Fetch file with useCache mode, close cache for local mode.
Utils.fetchFile(name, new File(SparkFiles.getRootDirectory()), conf,
env.securityManager, hadoopConf, timestamp, useCache = !isLocal)
currentFiles(name) = timestamp
}
for ((name, timestamp) <- newJars) {
val localName = new URI(name).getPath.split("/").last
val currentTimeStamp = currentJars.get(name)
.orElse(currentJars.get(localName))
.getOrElse(-1L)
if (currentTimeStamp < timestamp) {
logInfo("Fetching " + name + " with timestamp " + timestamp)
// Fetch file with useCache mode, close cache for local mode.
Utils.fetchFile(name, new File(SparkFiles.getRootDirectory()), conf,
env.securityManager, hadoopConf, timestamp, useCache = !isLocal)
currentJars(name) = timestamp
// Add it to our class loader
val url = new File(SparkFiles.getRootDirectory(), localName).toURI.toURL
if (!urlClassLoader.getURLs().contains(url)) {
logInfo("Adding " + url + " to class loader")
urlClassLoader.addURL(url)
}
}
}
}
}
==> org.apache.spark.scheduler.Task#run
final def run(
taskAttemptId: Long,
attemptNumber: Int,
metricsSystem: MetricsSystem): T = {
SparkEnv.get.blockManager.registerTask(taskAttemptId)
val taskContext = new TaskContextImpl(
stageId,
stageAttemptId, // stageAttemptId and stageAttemptNumber are semantically equal
partitionId,
taskAttemptId,
attemptNumber,
taskMemoryManager,
localProperties,
metricsSystem,
metrics)
context = if (isBarrier) {
new BarrierTaskContext(taskContext)
} else {
taskContext
}
TaskContext.setTaskContext(context)
taskThread = Thread.currentThread()
if (\_reasonIfKilled != null) {
kill(interruptThread = false, \_reasonIfKilled)
}
new CallerContext(
"TASK",
SparkEnv.get.conf.get(APP\_CALLER\_CONTEXT),
appId,
appAttemptId,
jobId,
Option(stageId),
Option(stageAttemptId),
Option(taskAttemptId),
Option(attemptNumber)).setCurrentContext()
try {
//这个类只是一个模板类或者抽象类, 具体实现类分为ResultTask, ShuffleMapTask 两种
runTask(context)
}
}
==>org.apache.spark.scheduler.ShuffleMapTask#runTask
ShuffleMapTask将rdd的元素,切分为多个bucket, 基于ShuffleDependency指定的partitioner,默认就是HashPartitioner
ShuffleMapTask 核心方法是 RDD.iterator[底层调用 compute 方法(fn(context,index,partition))],
执行完成rdd之后,rdd或返回处理过后的partition数据,这些数据通过shuffleWriter在经过HashPartitioner写入对应的分区中
// ShuffleMapTask将rdd的元素,切分为多个bucket
// 基于ShuffleDependency指定的partitioner,默认就是HashPartitioner
private[spark] class ShuffleMapTask(
…
// ShuffleMapTask的 runTask 有 MapStatus返回值
override def runTask(context: TaskContext): MapStatus = {
// Deserialize the RDD using the broadcast variable.
val threadMXBean = ManagementFactory.getThreadMXBean
val deserializeStartTime = System.currentTimeMillis()
val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime
} else 0L
// 对task要处理的数据,做反序列化操作
val ser = SparkEnv.get.closureSerializer.newInstance()
//获得 RDD
val (rdd, dep) = ser.deserialize\[(RDD\[\_\], ShuffleDependency\[\_, \_, \_\])\](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
\_executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime
\_executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime - deserializeStartCpuTime
} else 0L
var writer: ShuffleWriter\[Any, Any\] = null
try {
// 拿到shuffleManager
val manager = SparkEnv.get.shuffleManager
// 拿到shuffleWriter
writer = manager.getWriter\[Any, Any\](dep.shuffleHandle, partitionId, context)
// 核心逻辑,调用rdd的iterator方法,并且传入了当前要处理的partition
// 执行完成rdd之后,rdd或返回处理过后的partition数据,这些数据通过shuffleWriter
// 在经过HashPartitioner写入对应的分区中
writer.write(rdd.iterator(partition, context).asInstanceOf\[Iterator\[\_ <: Product2\[Any, Any\]\]\])
// 返回结果 MapStatus ,里面封装了ShuffleMapTask存储在哪里,其实就是BlockManager相关信息
writer.stop(success = true).get
}
}
…
}
==> org.apache.spark.scheduler.ResultTask#runTask
override def runTask(context: TaskContext): U = {
// Deserialize the RDD and the func using the broadcast variables.
val threadMXBean = ManagementFactory.getThreadMXBean
val deserializeStartTime = System.currentTimeMillis()
val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime
} else 0L
val ser = SparkEnv.get.closureSerializer.newInstance()
val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
_executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime
_executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime - deserializeStartCpuTime
} else 0L
//直接调用用户自定义函数
func(context, rdd.iterator(partition, context))
}
==> org.apache.spark.rdd.RDD#iterator
final def iterator(split: Partition, context: TaskContext): Iterator[T] = {
//结果不需要存储
if (storageLevel != StorageLevel.NONE) {
getOrCompute(split, context)
} else {
computeOrReadCheckpoint(split, context)
}
}
==> org.apache.spark.rdd.RDD#computeOrReadCheckpoint
/**
* Compute an RDD partition or read it from a checkpoint if the RDD is checkpointing.
*/
private[spark] def computeOrReadCheckpoint(split: Partition, context: TaskContext): Iterator[T] =
{
if (isCheckpointedAndMaterialized) {
firstParent[T].iterator(split, context)
} else {
//核心方法, 此方法为虚方法,具体实现由具体 RDD 子类实现,如 MapPartitionsRDD,JdbcRDD等
compute(split, context)
}
}
demo:
class MapPartitionsRDD[U: ClassTag, T: ClassTag](
var prev: RDD[T],
f: (TaskContext, Int, Iterator[T]) => Iterator[U], // (TaskContext, partition index, iterator)
preservesPartitioning: Boolean = false,
isFromBarrier: Boolean = false,
isOrderSensitive: Boolean = false)
extends RDD[U](prev) {
override def compute(split: Partition, context: TaskContext): Iterator[U] =
f(context, split.index, firstParent[T].iterator(split, context))
}
class JdbcRDD[T: ClassTag](
sc: SparkContext,
getConnection: () => Connection,
sql: String,
lowerBound: Long,
upperBound: Long,
numPartitions: Int,
mapRow: (ResultSet) => T = JdbcRDD.resultSetToObjectArray _)
extends RDD[T](sc, Nil) with Logging {
override def getPartitions: Array[Partition] = {
// bounds are inclusive, hence the + 1 here and - 1 on end
val length = BigInt(1) + upperBound - lowerBound
(0 until numPartitions).map { i =>
val start = lowerBound + ((i * length) / numPartitions)
val end = lowerBound + (((i + 1) * length) / numPartitions) - 1
new JdbcPartition(i, start.toLong, end.toLong)
}.toArray
}
override def compute(thePart: Partition, context: TaskContext): Iterator[T] = new NextIterator[T]
{
context.addTaskCompletionListener[Unit]{ context => closeIfNeeded() }
val part = thePart.asInstanceOf[JdbcPartition]
val conn = getConnection()
val stmt = conn.prepareStatement(sql, ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY)
val url = conn.getMetaData.getURL
val rs = stmt.executeQuery()
override def getNext(): T = {
if (rs.next()) {
mapRow(rs)
} else {
finished = true
null.asInstanceOf\[T\]
}
}
override def close() {
}
}
}
手机扫一扫
移动阅读更方便
你可能感兴趣的文章