个人理解,欢迎指正
数据库
引擎
写数据
读数据
补充
MySql
InnoDB:支持事务,高速读写性能一般
Myisam:不支持事务,高速读写性能好
以InnoDB更新一条记录为例
1、B+Tree搜索找到这行记录,如果数据页在内存直接返回给【执行器】,否则从磁盘读入内存再返回
2、【执行器】更新数据,再调用【引擎】接口写入这行新数据
3、【引擎】将旧数据备份到undo log,然后更新内存中数据页的这行数据,同时将操作记录写到redo log里,此时redo log 处于prepare状态
4、【执行器】记录binlog日志
5、【执行器】调用引擎接口,【引擎】将redo log改成commit状态
6、此时更新就算完成了,【InnoBD引擎】会在适当的时候将操作记录批量刷到磁盘,并清理redo log
其基本流程是:先去缓存页查找,若没有则通过B+Tree检索到叶子节点对应的数据页,然后加到缓存页并返回
redo log(重做日志)和 binlog(归档日志)
1、redo log 是 InnoDB 引擎特有的;binlog 是 MySQL 的 Server 层实现的,所有引擎都可以使用。
2、redo log 是物理日志,记录的是“在某个数据页上做了什么修改”;binlog 是逻辑日志,记录的是这个语句的原始逻辑,比如“给 ID=2 这一行的 c 字段加 1 ”。
3、redo log 是循环写的,空间固定会用完;binlog 是可以追加写入的。“追加写”是指 binlog 文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。
Hadoop
存储:HDFS
计算:MapReduce
HDFS写数据
1、Client向NameNode请求上传Block(文件块)
2、NameNode向Client返回DataNode地址
3、Client以Package为单位向DataNode依次写入,直到写完整个Block
4、每传输完一个Package,DataNode会向Clent返回一个ack,若失败会重试
HDFS读数据
1、Client向NameNode请求下载文件
2、NameNode按负载均衡和节点距离返回DataNode给Client
3、Client读取DataNode,以Package为单位拉取,先存入缓存,最后生成文件,中间有checksum校验
MapReduce运算
1、InputFormat会从DataNode拉取一个个Bolck块
2、然后启动若干个MapTask对Block数据做运算
3、运算后的结果经过Shuffer落到磁盘
4、然后启动若干个ReduceTask从磁盘读取数据进行聚合
5、最后通过OutputFormat把结果写到HDFS或其他存储介质里
BigTable
SSTable
其实SSTable文件也是存在GFS上,但GFS不支持随机写【增删改】,那么BigTable是如何实现的呢?
1、其实BigTable在内存里维护了一个内存表(MemTable),每次数据【增删改】都会增加一条记录,并附带版本。当容量到达阀值的时候会把MemTable转成SSTable【顺序写】到GFS上,后续数据继续写新的MemTable
2、另外,会启动一个后台进程(Major Compaction机制),不断的合并SSTable,只保留【增删改】的最终数据,老版本的数据被删除
当查询数据时,会去读取索引数据,找到数据块返回给Tablet Server,再从这个数据块里提取出对应的 KV 数据返回给客户端
1、内存里缓存 BloomFilter,使得对于不存在于 SSTable 中的行键,可以直接过滤掉,无需访问 SSTable 文件才能知道它并不存在
2、通过 Scan Cache 和 Block Cache 这两层缓存,利用局部性原理,使得查询结果可以在缓存中找到,而无需访问 GFS 上的硬盘
3、经过前2步还没找到,会通过SSTable索引来查找,底层是AVL红黑树或跳表,随机读写都是O(log n)
1、SSTable 的文件格式是由两部分组成:
数据块(data block),就是实际要存储的行键、列、值以及时间戳,这些数据会按照行键排序分成一个个固定大小的块(block)来进行存储。
元数据块(meta block),是一系列的元数据和索引信息,这其中包括用来快速过滤当前 SSTable 中不存在的行键的布隆过滤器,以及整个数据块的一些统计指标。
另外还有针对数据块和元数据块的索引(index),这些索引内容,则分别是元数据索引块(metaindex block)和数据索引块(index block)
2、因为 SSTable 里面的数据块是顺序存储的,所以Major Compaction做的是一个有序链表的多路归并,这个过程中在磁盘上是顺序读写
Clickhouse
表引擎主要是MergeTree系列,还有Log系列等其他引擎
1、一个Table是由多个Partition组成,一个Partition是由多个Part组成,Part里按column【列式存储】
2、旧数据在一个Part,新数据会写另一个Part,然后通过MergeTree引擎将多个Part异步合并(按排序键归并排序)
因为是按排序键已经排好序了,所以索引结构不需要像其他引擎设计的那么复杂;
底层是稀疏索引(默认8192为一个步长),通过【稀疏索引+标记的偏移量】就能很快找到Block的位置
1、Clickhouse通过【批处理+预排序】将数据提前排好序
2、Clickhouse能处理的最小单位是block,block就是一群行的集合,默认最大8192行组成一个block
相关资料
手机扫一扫
移动阅读更方便
你可能感兴趣的文章