Hadoop| MapReduce01 概述
阅读原文时间:2025年01月24日阅读:1

概述

分布式运算程序;

优点:易于编程;良好扩展性;高容错性;适合PB级以上海量数据的离线处理;

缺点:不擅长实时计算;不擅长流式计算;不擅长DAG有向图计算;

核心思想:

1)分布式的运算程序往往需要分成至少2个阶段。

2)第一个阶段的MapTask并发实例,完全并行运行,互不相干。

3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。

4)MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行。

一个完整的MapReduce在分布式运行时有3类实例进程:

MrAppMaster:负责整个程序的过程调度及状态协调;

MapTask:负责Map阶段的整个数据处理流程;

ReduceTask:负责ReduceTask阶段的整个数据处理流程;

数据序列化类型

常用的数据类型对应的Hadoop数据序列化类型 Java类型    Hadoop Writable类型 Boolean    BooleanWritable Byte ByteWritable Int IntWritable Float FloatWritable Long LongWritable Double     DoubleWritable String     Text Map MapWritable Array      ArrayWritable Null   NullWritable

MapReduce编程规范:

用户编写的程序分成三个部分:Mapper、Reducer和Driver。

Mapper阶段:

自定义的Mapper继承父类;输入数据以K,V对的形式;业务逻辑写在map( )方法;

输出数据以K,V形式;map()方法(MapTask进程)对每一个k,v调用一次

Reduce阶段:

自定义的Reducer继承父类;输入数据类型对应Mapper的输出类型以K,V对的形式;业务逻辑写在reduce( )方法;

输出数据以K,V形式;(ReduceTask进程)对每一组相同k的k,v调用一次reduce方法

Driver 阶段:

Driver 相当于yarn集群的客户端,提交(封装了MapReduce程序相关运行参数的job对象)整个程序到yarn集群

在pom.xml文件中添加如下依赖

junit junit RELEASE org.apache.logging.log4j log4j-core 2.8.2 org.apache.hadoop hadoop-common 2.7.2 org.apache.hadoop hadoop-client 2.7.2 org.apache.hadoop hadoop-hdfs 2.7.2

在项目的src/main/resources目录下,新建一个文件,命名为“log4j.properties”,在文件中填入。

log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

编写Mapper类

package com.xxx.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;

public class WcMapper extends Mapper {
//定义泛型: 输入是以行号: 一行文本这种形式; 输出是以aaa: 1这种形式
private Text word = new Text(); //对象定义为类的私有,是为了防止垃圾,对象太多会占用很大的JVM堆空间;
private IntWritable one = new IntWritable(1);

@Override  
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {  
    //1.切分行数据  
    String\[\] split = value.toString().split(" ");  
    for (String str : split) {  
        this.word.set(str);  
        //context贯彻整个页面的,  
        context.write(this.word, one);  
    }

}  

}

WcReduce类

package com.xxx.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
import java.util.Iterator;

public class WcReduce extends Reducer {
//泛型 输入aaa 1; 输出是对所有的进行统计汇总aaa 3;
private IntWritable sumAll = new IntWritable();

@Override  
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {  
    int sum = 0;  
    Iterator<IntWritable> iterator = values.iterator();  
    while (iterator.hasNext()){  
        sum += iterator.next().get();  
    }  
    this.sumAll.set(sum);  
    context.write(key, this.sumAll);  
}  

}

WcDriver

package com.atguigu.mapreduce.wordcount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class WcDriver {

public static void main(String\[\] args) throws IOException, ClassNotFoundException, InterruptedException {  
    //1.获取一个任务实例; 获取配置信息和封装任务  
    Job job = Job.getInstance(new Configuration());  
    //2.设置jar类加载路径  
    job.setJarByClass(WcDriver.class);  
    //3.设置Mapper和Reduce类  
    job.setMapperClass(WcMapper.class);  
    job.setReducerClass(WcReduce.class);  
    //4.设置Mapper和Reduce最终输出的k  v类型  
    job.setMapOutputKeyClass(Text.class);  
    job.setMapOutputValueClass(IntWritable.class);

    //5.设置输入和输出路径  
    FileInputFormat.setInputPaths(job,new Path(args\[0\]));  
    FileOutputFormat.setOutputPath(job, new Path(args\[1\]));

    //6.提交任务  
    boolean b = job.waitForCompletion(true);  
    System.exit(b ? 0 : 1);  
}  

}

打包jar,copy到Hadoop集群上传,然后在集群中运行

[kris@hadoop101 hadoop-2.7.2]$ rz -E //上传jar包WordCount-1.0-SNAPSHOT.jar

[kris@hadoop101 hadoop-2.7.2]$ hadoop jar WordCount-1.0-SNAPSHOT.jar com.atguigu.mapreduce.wordcount.WcDriver /2.txt /output //运行

Hadoop序列化

注意:

反序列化时,需要反射调用空参构造函数,所以必须有空参构造

注意反序列化的顺序和序列化的顺序完全一致

要想把结果显示在文件中,需要重写toString(),可用”\t”分开,方便后续用。

如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口(WritableComparable< >),因为MapReduce框中的Shuffle过程要求对key必须能排序。

@Override

public int compareTo(FlowBean o) {

// 倒序排列,从大到小

return xxx ;

}

自定义bean对象实现序列化接口(Writable)

package flow;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

//1.实现Writable接口
public class FlowBean implements Writable {
private long upFlow;
private long downFlow;
private long sumFlow;

public FlowBean() {  
    super();  
}

public void set(long upFlow, long downFlow) {  
    this.upFlow = upFlow;  
    this.downFlow = downFlow;  
    this.sumFlow = this.upFlow + this.downFlow;  
}

public long getUpFlow() {  
    return upFlow;  
}  
public void setUpFlow(long upFlow) {  
    this.upFlow = upFlow;  
}

public long getDownFlow() {  
    return downFlow;  
}

public void setDownFlow(long downFlow) {  
    this.downFlow = downFlow;  
}

public long getSumFlow() {  
    return sumFlow;  
}

public void setSumFlow(long sumFlow) {  
    this.sumFlow = sumFlow;  
}

@Override  
public String toString() {  
    return "上行流量=" + upFlow +  
            ",下行流量=" + downFlow +  
            ",总流量=" + sumFlow;  
}  
//写序列化方法;  
public void write(DataOutput dataOutput) throws IOException {  
    dataOutput.writeLong(upFlow);  
    dataOutput.writeLong(downFlow);  
    dataOutput.writeLong(sumFlow);  
}  
//反序列化方法必须和序列化方法顺序一致;  
public void readFields(DataInput dataInput) throws IOException {  
    this.upFlow = dataInput.readLong();  
    this.downFlow = dataInput.readLong();  
    this.sumFlow = dataInput.readLong();

}  

}

//写序列化方法;  
public void write(DataOutput dataOutput) throws IOException {  
    dataOutput.writeLong(upFlow);  
    dataOutput.writeLong(downFlow);  
    dataOutput.writeLong(sumFlow);  
}  
//反序列化方法必须和序列化方法顺序一致;  
public void readFields(DataInput dataInput) throws IOException {  
    this.upFlow = dataInput.readLong();  
    this.downFlow = dataInput.readLong();  
    this.sumFlow = dataInput.readLong();

FlowMapper类
//1.泛型是输入:行号+一行的内容; 输出:key字符手机号+类对象
public class FlowMapper extends Mapper {
private Text phone = new Text();
FlowBean flowBean = new FlowBean();

@Override  
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {  
    String\[\] split = value.toString().split("\\t");  
    phone.set(split\[1\]); //获取手机号key  
    flowBean.set(Long.parseLong(split\[split.length-3\]), Long.parseLong(split\[split.length-2\]));//获取upFlow和downFlow作为v  
    context.write(phone, flowBean);  
}  

}

FlowReducer类

public class FlowReduce extends Reducer {
private FlowBean flowBean = new FlowBean();
@Override
protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
super.reduce(key, values, context);
int sumUpFlow = 0;
int sumDownFlow = 0;
for (FlowBean value : values) {
sumUpFlow += value.getUpFlow();
sumDownFlow += value.getDownFlow();
}
flowBean.set(sumUpFlow, sumDownFlow);
context.write(key, flowBean);
}
}

FlowDriver类

public class FlowDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//1.获取job实例;获取配置信息
Job job = Job.getInstance(new Configuration());
//2.设置类路径;指定被程序的jar包所在的路径
job.setJarByClass(FlowDriver.class);
//3.设置Mapper和Reducer 指定本业务job要使用的mapper/Reducer业务类
job.setMapperClass(FlowMapper.class);
job.setReducerClass(FlowReduce.class);
//4.设置输出类型 指定mapper输出数据的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);
// 指定最终输出的数据的kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
//5.设置输入输出路径
FileInputFormat.setInputPaths(job, new Path("F:\\input"));
FileOutputFormat.setOutputPath(job, new Path("F:\\output"));
//6.提交
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}