分布式运算程序;
优点:易于编程;良好扩展性;高容错性;适合PB级以上海量数据的离线处理;
缺点:不擅长实时计算;不擅长流式计算;不擅长DAG有向图计算;
核心思想:
1)分布式的运算程序往往需要分成至少2个阶段。
2)第一个阶段的MapTask并发实例,完全并行运行,互不相干。
3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。
4)MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行。
一个完整的MapReduce在分布式运行时有3类实例进程:
MrAppMaster:负责整个程序的过程调度及状态协调;
MapTask:负责Map阶段的整个数据处理流程;
ReduceTask:负责ReduceTask阶段的整个数据处理流程;
数据序列化类型
常用的数据类型对应的Hadoop数据序列化类型 Java类型 Hadoop Writable类型 Boolean BooleanWritable Byte ByteWritable Int IntWritable Float FloatWritable Long LongWritable Double DoubleWritable String Text Map MapWritable Array ArrayWritable Null NullWritable
MapReduce编程规范:
用户编写的程序分成三个部分:Mapper、Reducer和Driver。
Mapper阶段:
自定义的Mapper继承父类;输入数据以K,V对的形式;业务逻辑写在map( )方法;
输出数据以K,V形式;map()方法(MapTask进程)对每一个k,v调用一次
Reduce阶段:
自定义的Reducer继承父类;输入数据类型对应Mapper的输出类型以K,V对的形式;业务逻辑写在reduce( )方法;
输出数据以K,V形式;(ReduceTask进程)对每一组相同k的k,v调用一次reduce方法
Driver 阶段:
Driver 相当于yarn集群的客户端,提交(封装了MapReduce程序相关运行参数的job对象)整个程序到yarn集群
在pom.xml文件中添加如下依赖
在项目的src/main/resources目录下,新建一个文件,命名为“log4j.properties”,在文件中填入。
log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
编写Mapper类
package com.xxx.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class WcMapper extends Mapper
//定义泛型: 输入是以行号: 一行文本这种形式; 输出是以aaa: 1这种形式
private Text word = new Text(); //对象定义为类的私有,是为了防止垃圾,对象太多会占用很大的JVM堆空间;
private IntWritable one = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1.切分行数据
String\[\] split = value.toString().split(" ");
for (String str : split) {
this.word.set(str);
//context贯彻整个页面的,
context.write(this.word, one);
}
}
}
WcReduce类
package com.xxx.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
import java.util.Iterator;
public class WcReduce extends Reducer
//泛型 输入aaa 1; 输出是对所有的进行统计汇总aaa 3;
private IntWritable sumAll = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
Iterator<IntWritable> iterator = values.iterator();
while (iterator.hasNext()){
sum += iterator.next().get();
}
this.sumAll.set(sum);
context.write(key, this.sumAll);
}
}
WcDriver
package com.atguigu.mapreduce.wordcount;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class WcDriver {
public static void main(String\[\] args) throws IOException, ClassNotFoundException, InterruptedException {
//1.获取一个任务实例; 获取配置信息和封装任务
Job job = Job.getInstance(new Configuration());
//2.设置jar类加载路径
job.setJarByClass(WcDriver.class);
//3.设置Mapper和Reduce类
job.setMapperClass(WcMapper.class);
job.setReducerClass(WcReduce.class);
//4.设置Mapper和Reduce最终输出的k v类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
//5.设置输入和输出路径
FileInputFormat.setInputPaths(job,new Path(args\[0\]));
FileOutputFormat.setOutputPath(job, new Path(args\[1\]));
//6.提交任务
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
打包jar,copy到Hadoop集群上传,然后在集群中运行
[kris@hadoop101 hadoop-2.7.2]$ rz -E //上传jar包WordCount-1.0-SNAPSHOT.jar
[kris@hadoop101 hadoop-2.7.2]$ hadoop jar WordCount-1.0-SNAPSHOT.jar com.atguigu.mapreduce.wordcount.WcDriver /2.txt /output //运行
注意:
反序列化时,需要反射调用空参构造函数,所以必须有空参构造
注意反序列化的顺序和序列化的顺序完全一致
要想把结果显示在文件中,需要重写toString(),可用”\t”分开,方便后续用。
如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口(WritableComparable< >),因为MapReduce框中的Shuffle过程要求对key必须能排序。
public int compareTo(FlowBean o) {
// 倒序排列,从大到小
return xxx ;
}
自定义bean对象实现序列化接口(Writable)
package flow;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
//1.实现Writable接口
public class FlowBean implements Writable {
private long upFlow;
private long downFlow;
private long sumFlow;
public FlowBean() {
super();
}
public void set(long upFlow, long downFlow) {
this.upFlow = upFlow;
this.downFlow = downFlow;
this.sumFlow = this.upFlow + this.downFlow;
}
public long getUpFlow() {
return upFlow;
}
public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
}
public long getDownFlow() {
return downFlow;
}
public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
}
public long getSumFlow() {
return sumFlow;
}
public void setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
}
@Override
public String toString() {
return "上行流量=" + upFlow +
",下行流量=" + downFlow +
",总流量=" + sumFlow;
}
//写序列化方法;
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeLong(upFlow);
dataOutput.writeLong(downFlow);
dataOutput.writeLong(sumFlow);
}
//反序列化方法必须和序列化方法顺序一致;
public void readFields(DataInput dataInput) throws IOException {
this.upFlow = dataInput.readLong();
this.downFlow = dataInput.readLong();
this.sumFlow = dataInput.readLong();
}
}
//写序列化方法;
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeLong(upFlow);
dataOutput.writeLong(downFlow);
dataOutput.writeLong(sumFlow);
}
//反序列化方法必须和序列化方法顺序一致;
public void readFields(DataInput dataInput) throws IOException {
this.upFlow = dataInput.readLong();
this.downFlow = dataInput.readLong();
this.sumFlow = dataInput.readLong();
FlowMapper类
//1.泛型是输入:行号+一行的内容; 输出:key字符手机号+类对象
public class FlowMapper extends Mapper
private Text phone = new Text();
FlowBean flowBean = new FlowBean();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String\[\] split = value.toString().split("\\t");
phone.set(split\[1\]); //获取手机号key
flowBean.set(Long.parseLong(split\[split.length-3\]), Long.parseLong(split\[split.length-2\]));//获取upFlow和downFlow作为v
context.write(phone, flowBean);
}
}
FlowReducer类
public class FlowReduce extends Reducer
private FlowBean flowBean = new FlowBean();
@Override
protected void reduce(Text key, Iterable
super.reduce(key, values, context);
int sumUpFlow = 0;
int sumDownFlow = 0;
for (FlowBean value : values) {
sumUpFlow += value.getUpFlow();
sumDownFlow += value.getDownFlow();
}
flowBean.set(sumUpFlow, sumDownFlow);
context.write(key, flowBean);
}
}
FlowDriver类
public class FlowDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//1.获取job实例;获取配置信息
Job job = Job.getInstance(new Configuration());
//2.设置类路径;指定被程序的jar包所在的路径
job.setJarByClass(FlowDriver.class);
//3.设置Mapper和Reducer 指定本业务job要使用的mapper/Reducer业务类
job.setMapperClass(FlowMapper.class);
job.setReducerClass(FlowReduce.class);
//4.设置输出类型 指定mapper输出数据的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);
// 指定最终输出的数据的kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
//5.设置输入输出路径
FileInputFormat.setInputPaths(job, new Path("F:\\input"));
FileOutputFormat.setOutputPath(job, new Path("F:\\output"));
//6.提交
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
手机扫一扫
移动阅读更方便
你可能感兴趣的文章