TensorRT 基于Yolov3的开发
Models
Desc
tensorRT for Yolov3
https://github.com/lewes6369/TensorRT-Yolov3
Test Enviroments
Ubuntu 16.04
TensorRT 5.0.2.6/4.0.1.6
CUDA 9.2
下载官方模型转换的caffe模型:
百度云pwd:gbue
谷歌drive
如果运行模型是自己训练的,注释“upsample_param”块,并将最后一层的prototxt修改为:
Download the caffe model converted by official model:
Baidu Cloud here pwd: gbue
Google Drive here
If run model trained by yourself, comment the "upsample_param" blocks, and modify the prototxt the last layer as:
layer {
#the bottoms are the yolo input layers
bottom: "layer82-conv"
bottom: "layer94-conv"
bottom: "layer106-conv"
top: "yolo-det"
name: "yolo-det"
type: "Yolo"
}
如果不同的内核,还需要更改“YoloConfigs.h”中的yolo配置。
Run Sample
#build source code
git submodule update --init --recursive
mkdir build
cd build && cmake .. && make && make install
cd ..
#for yolov3-608
./install/runYolov3 --caffemodel=./yolov3_608.caffemodel --prototxt=./yolov3_608.prototxt --input=./test.jpg --W=608 --H=608 --class=80
#for fp16
./install/runYolov3 --caffemodel=./yolov3_608.caffemodel --prototxt=./yolov3_608.prototxt --input=./test.jpg --W=608 --H=608 --class=80 --mode=fp16
#for int8 with calibration datasets
./install/runYolov3 --caffemodel=./yolov3_608.caffemodel --prototxt=./yolov3_608.prototxt --input=./test.jpg --W=608 --H=608 --class=80 --mode=int8 --calib=./calib_sample.txt
#for yolov3-416 (need to modify include/YoloConfigs for YoloKernel)
./install/runYolov3 --caffemodel=./yolov3_416.caffemodel --prototxt=./yolov3_416.prototxt --input=./test.jpg --W=416 --H=416 --class=80
tensorRT for Yolov3
Ubuntu 16.04
TensorRT 5.0.2.6/4.0.1.6
CUDA 9.2
Performance
Eval Result
用appending附件编译上面的模型模型--evallist=labels.txt
从val2014中选择的200张图片制作的int8校准数据(见脚本目录)
提示注意:
在yolo层和nms中,caffe的实现没有什么不同,应该与tensorRT fp32的结果相似。
see
link TensorRTWrapper
https://github.com/lewes6369/tensorRTWrapper
a wrapper for tensorRT net (parser caffe)
Ubuntu 16.04
TensorRT 5.0.2.6/4.0.1.6
CUDA 9.2
you can use the wrapper like this:
//normal
std::vector
trtNet net("vgg16.prototxt","vgg16.caffemodel",{"prob"},calibratorData);
//fp16
trtNet net_fp16("vgg16.prototxt","vgg16.caffemodel",{"prob"},calibratorData,RUN_MODE:FLOAT16);
//int8
trtNet net_int8("vgg16.prototxt","vgg16.caffemodel",{"prob"},calibratorData,RUN_MODE:INT8);
//run inference:
net.doInference(input_data.get(), outputData.get());
//can print time cost
net.printTime();
//can write to engine and load From engine
net.saveEngine("save_1.engine");
trtNet net2("save_1.engine");
when you need add new plugin ,just add the plugin code to pluginFactory
#for classification
cd sample
mkdir build
cd build && cmake .. && make && make install
cd ..
./install/runNet --caffemodel=${CAFFE_MODEL_NAME} --prototxt=${CAFFE_PROTOTXT} --input=./test.jpg
手机扫一扫
移动阅读更方便
你可能感兴趣的文章