小\(\text{w}\) 偶然间得到了\(1\)个 \(DAG\)。
这个 \(DAG\) 有 \(m\) 层,第\(1\)层只有\(1\)个源点,最后\(1\)层只有\(1\)个汇点,剩下的每\(1\)层都有 \(k\) 个
节点。
现在小\(\text{w}\) 每次可以取反第 \(i(1 < i < m - 1)\) 层和第 \(i + 1\) 层之间的连边。也就是把原本从
\((i, k_1)\) 连到 \((i + 1, k_2)\) 的边,变成从 \((i, k_2)\) 连到 \((i + 1, k_1)\)。
请问他有多少种取反的方案,把从源点到汇点的路径数变成偶数条?
答案对 \(998244353\) 取模。
第一行两个整数 \(m\),\(k\)。
接下来 \(m - 1\) 行, 第一行和最后一行有 \(k\) 个整数 \(0\) 或 \(1\),剩下每行有 \(k^2\) 个整数 \(0\) 或 \(1\),第
\((j - 1) \times k + t\) 个整数表示 \((i, j)\) 到 \((i + 1, t)\) 有没有边。
一行一个整数表示答案。
\(20\%\) 的数据满足\(m \le 10,k \le 2\)。
\(40\%\) 的数据满足\(m \le 10^3,k \le 2\)。
\(60\%\) 的数据满足\(m \le10^3,k \le 5\)。
\(100\%\) 的数据满足\(4 \le m \le 10^4,k \le 10\)。
如果你读懂了题目,那么应该不是那么难想。
如何保证偶数条?发现奇偶可以成为状态,于是状压。
令\(dp_{i,s}\)表示第\(i\)层节点状态为\(s\)的方案数
转移也不难,但是我比较傻写了一种\(O(mk^22^k)\)的辣鸡做法,成功只拿了\(60pts\)
如果二进制连边就可以做到\(O(mk2^k)\)了,有点轻微卡常还是注意一下。
Code:
#include <cstdio>
const int N=1e4+10;
const int mod=998244353;
int g[N][11][11],m,k,dp[N][1<<10],sta,ans;
int main()
{
scanf("%d%d",&m,&k);
for(int is,j=1;j<=k;j++)
{
scanf("%d",&is);
sta|=is<<j-1;
}
dp[2][sta]=1;
for(int i=2;i<m-1;i++)
{
int a[12]={0},b[12]={0};
for(int is,j=1;j<=k;j++)
for(int l=1;l<=k;l++)
{
scanf("%d",&is);
a[j]|=is<<l-1;
b[l]|=is<<j-1;
}
for(int s=0;s<1<<k;++s)
if(dp[i][s])
{
int t0=0,t1=0;
for(int l=1;l<=k;l++)
if(s>>l-1&1)
t0^=a[l],t1^=b[l];
(dp[i+1][t0]+=dp[i][s])%=mod;
(dp[i+1][t1]+=dp[i][s])%=mod;
}
}
sta=0;
for(int is,j=1;j<=k;j++)
{
scanf("%d",&is);
sta|=is<<j-1;
}
for(int s=0;s<1<<k;s++)
{
if(dp[m-1][s])
{
int t=0;
for(int i=1;i<=k;i++)
if(s>>i-1&1&&sta>>i-1&1)
t^=1;
if(!t) (ans+=dp[m-1][s])%=mod;
}
}
printf("%d\n",ans);
return 0;
}
2018.10.20
手机扫一扫
移动阅读更方便
你可能感兴趣的文章