Adore 解题报告
阅读原文时间:2023年07月16日阅读:1

Adore

小\(\text{w}\) 偶然间得到了\(1\)个 \(DAG\)。

这个 \(DAG\) 有 \(m\) 层,第\(1\)层只有\(1\)个源点,最后\(1\)层只有\(1\)个汇点,剩下的每\(1\)层都有 \(k\) 个

节点。

现在小\(\text{w}\) 每次可以取反第 \(i(1 < i < m - 1)\) 层和第 \(i + 1\) 层之间的连边。也就是把原本从

\((i, k_1)\) 连到 \((i + 1, k_2)\) 的边,变成从 \((i, k_2)\) 连到 \((i + 1, k_1)\)。

请问他有多少种取反的方案,把从源点到汇点的路径数变成偶数条?

答案对 \(998244353\) 取模。

第一行两个整数 \(m\),\(k\)。

接下来 \(m - 1\) 行, 第一行和最后一行有 \(k\) 个整数 \(0\) 或 \(1\),剩下每行有 \(k^2\) 个整数 \(0\) 或 \(1\),第

\((j - 1) \times k + t\) 个整数表示 \((i, j)\) 到 \((i + 1, t)\) 有没有边。

一行一个整数表示答案。

\(20\%\) 的数据满足\(m \le 10,k \le 2\)。

\(40\%\) 的数据满足\(m \le 10^3,k \le 2\)。

\(60\%\) 的数据满足\(m \le10^3,k \le 5\)。

\(100\%\) 的数据满足\(4 \le m \le 10^4,k \le 10\)。

如果你读懂了题目,那么应该不是那么难想。

如何保证偶数条?发现奇偶可以成为状态,于是状压。

令\(dp_{i,s}\)表示第\(i\)层节点状态为\(s\)的方案数

转移也不难,但是我比较傻写了一种\(O(mk^22^k)\)的辣鸡做法,成功只拿了\(60pts\)

如果二进制连边就可以做到\(O(mk2^k)\)了,有点轻微卡常还是注意一下。


Code:

#include <cstdio>
const int N=1e4+10;
const int mod=998244353;
int g[N][11][11],m,k,dp[N][1<<10],sta,ans;
int main()
{
    scanf("%d%d",&m,&k);
    for(int is,j=1;j<=k;j++)
    {
        scanf("%d",&is);
        sta|=is<<j-1;
    }
    dp[2][sta]=1;
    for(int i=2;i<m-1;i++)
    {
        int a[12]={0},b[12]={0};
        for(int is,j=1;j<=k;j++)
            for(int l=1;l<=k;l++)
            {
                scanf("%d",&is);
                a[j]|=is<<l-1;
                b[l]|=is<<j-1;
            }
        for(int s=0;s<1<<k;++s)
            if(dp[i][s])
            {
                int t0=0,t1=0;
                for(int l=1;l<=k;l++)
                    if(s>>l-1&1)
                        t0^=a[l],t1^=b[l];
                (dp[i+1][t0]+=dp[i][s])%=mod;
                (dp[i+1][t1]+=dp[i][s])%=mod;
            }
    }
    sta=0;
    for(int is,j=1;j<=k;j++)
    {
        scanf("%d",&is);
        sta|=is<<j-1;
    }
    for(int s=0;s<1<<k;s++)
    {
        if(dp[m-1][s])
        {
            int t=0;
            for(int i=1;i<=k;i++)
                if(s>>i-1&1&&sta>>i-1&1)
                    t^=1;
            if(!t) (ans+=dp[m-1][s])%=mod;
        }
    }
    printf("%d\n",ans);
    return 0;
}

2018.10.20

手机扫一扫

移动阅读更方便

阿里云服务器
腾讯云服务器
七牛云服务器