参考:http://blog.csdn.net/augusdi/article/details/12833235 第二节
新建NVIDIA项目:
新建项目及会生成一个简单的代码demo,计算矩阵的加法,如下(main中加了一些显示显卡性能的打印):
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include
cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size);
__global__ void addKernel(int *c, const int *a, const int *b)
{
int i = threadIdx.x;
c[i] = a[i] + b[i];
}
int main()
{
const int arraySize = ;
const int a[arraySize] = { , , , , };
const int b[arraySize] = { , , , , };
int c[arraySize] = { };
// Add vectors in parallel.
cudaError\_t cudaStatus = addWithCuda(c, a, b, arraySize);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addWithCuda failed!");
return ;
}
printf("{1,2,3,4,5} + {10,20,30,40,50} = {%d,%d,%d,%d,%d}\\n",
c\[\], c\[\], c\[\], c\[\], c\[\]);
// cudaDeviceReset must be called before exiting in order for profiling and
// tracing tools such as Nsight and Visual Profiler to show complete traces.
cudaStatus = cudaDeviceReset();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceReset failed!");
return ;
}
int deviceCount;
cudaGetDeviceCount(&deviceCount);
int dev;
for (dev = ; dev < deviceCount; dev++)
{
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, dev);
if (dev == )
{
if (/\*deviceProp.major==9999 && \*/deviceProp.minor = &&deviceProp.major==)
printf("\\n");
}
printf("\\nDevice%d:\\"%s\\"\\n", dev, deviceProp.name);
printf("Total amount of global memory %u bytes\\n", deviceProp.totalGlobalMem);
printf("Number of mltiprocessors %d\\n", deviceProp.multiProcessorCount);
printf("Total amount of constant memory: %u bytes\\n", deviceProp.totalConstMem);
printf("Total amount of shared memory per block %u bytes\\n", deviceProp.sharedMemPerBlock);
printf("Total number of registers available per block: %d\\n", deviceProp.regsPerBlock);
printf("Warp size %d\\n", deviceProp.warpSize);
printf("Maximum number of threada per block: %d\\n", deviceProp.maxThreadsPerBlock);
printf("Maximum sizes of each dimension of a block: %d x %d x %d\\n", deviceProp.maxThreadsDim\[\],
deviceProp.maxThreadsDim\[\],
deviceProp.maxThreadsDim\[\]);
printf("Maximum size of each dimension of a grid: %d x %d x %d\\n", deviceProp.maxGridSize\[\], deviceProp.maxGridSize\[\], deviceProp.maxGridSize\[\]);
printf("Maximum memory pitch : %u bytes\\n", deviceProp.memPitch);
printf("Texture alignmemt %u bytes\\n", deviceProp.texturePitchAlignment);
printf("Clock rate %.2f GHz\\n", deviceProp.clockRate\*1e-6f);
}
printf("\\nTest PASSED\\n");
getchar();
return ;
}
// Helper function for using CUDA to add vectors in parallel.
cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size)
{
int *dev_a = ;
int *dev_b = ;
int *dev_c = ;
cudaError_t cudaStatus;
// Choose which GPU to run on, change this on a multi-GPU system.
cudaStatus = cudaSetDevice();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU installed?");
goto Error;
}
// Allocate GPU buffers for three vectors (two input, one output) .
cudaStatus = cudaMalloc((void\*\*)&dev\_c, size \* sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void\*\*)&dev\_a, size \* sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void\*\*)&dev\_b, size \* sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
// Copy input vectors from host memory to GPU buffers.
cudaStatus = cudaMemcpy(dev\_a, a, size \* sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpy(dev\_b, b, size \* sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
// Launch a kernel on the GPU with one thread for each element.
addKernel<<<, size>>>(dev\_c, dev\_a, dev\_b);
// Check for any errors launching the kernel
cudaStatus = cudaGetLastError();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addKernel launch failed: %s\\n", cudaGetErrorString(cudaStatus));
goto Error;
}
// cudaDeviceSynchronize waits for the kernel to finish, and returns
// any errors encountered during the launch.
cudaStatus = cudaDeviceSynchronize();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\\n", cudaStatus);
goto Error;
}
// Copy output vector from GPU buffer to host memory.
cudaStatus = cudaMemcpy(c, dev\_c, size \* sizeof(int), cudaMemcpyDeviceToHost);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
Error:
cudaFree(dev_c);
cudaFree(dev_a);
cudaFree(dev_b);
return cudaStatus;
}
手机扫一扫
移动阅读更方便
你可能感兴趣的文章