Flink(九)【Flink的重启策略】
阅读原文时间:2023年07月08日阅读:2

目录

1.Flink的重启策略

Flink支持不同的重启策略,这些重启策略控制着job失败后如何重启。集群可以通过默认的重启策略来重启,这个默认的重启策略通常在未指定重启策略的情况下使用,而如果Job提交的时候指定了重启策略,这个重启策略就会覆盖掉集群的默认重启策略。

2.重启策略

2.1未开启checkpoint

未开启checkpoint,任务失败不会进行重启,job直接失败。

2.2开启checkpoint

1)不设置重启策略

默认是固定延迟重启。job任务会一直重启,不会挂,默认重启Integer.MAX_VALUE 次 ,每次间隔1s

flink-conf.yaml 配置

restart-strategy: fixed-delay

restart-strategy.fixed-delay.attempts: Integer.MAX_VALUE
restart-strategy.fixed-delay.delay: 1s
2)不重启

flink-conf.yaml 配置

restart-strategy: none

java代码

env.setRestartStrategy(RestartStrategies.noRestart());
3)固定延迟重启(默认)

一旦有失败,系统就会尝试每10秒重启一次,重启3次, 3次都失败该job失败

flink-conf.yaml 配置

restart-strategy: fixed-delay

restart-strategy.fixed-delay.attempts: 3
restart-strategy.fixed-delay.delay: 10 s

java代码

env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 5000L));
4)失败率重启

5分钟内若失败了3次则认为该job失败,重试间隔为10s

flink-conf.yaml 配置

restart-strategy:failure-rate

restart-strategy.failure-rate.max-failures-per-interval: 3
restart-strategy.failure-rate.failure-rate-interval: 5 min
restart-strategy.failure-rate.delay: 10 s

java代码

env.setRestartStrategy(RestartStrategies.failureRateRestart(
                3,
                Time.of(5, TimeUnit.MINUTES),
                Time.of(10, TimeUnit.SECONDS)));

3.重启效果演示

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.flink.realtime.utils.MyKafkaUtil;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.api.common.time.Time;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import java.util.concurrent.TimeUnit;

/**
 * @description: todo 测试Flink重启策略
 * @author: HaoWu
 * @create: 2021年06月22日
 */
public class RestartTest {
    public static void main(String[] args) throws Exception {
        // TODO 1.创建执行环境
        // 1.1 创建stream执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // 1.2 设置并行度
        env.setParallelism(4);
        // 1.3 设置checkpoint参数
        env.enableCheckpointing(5000L); //每5000ms做一次ck
        env.getCheckpointConfig().setCheckpointTimeout(60000L); // ck超时时间:1min
        env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE); //ck模式,默认:exactly_once
        //正常Cancel任务时,保留最后一次CK
        env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
        //重启策略
        //env.setRestartStrategy(RestartStrategies.noRestart());
        env.setRestartStrategy(RestartStrategies.failureRateRestart(
                3,
                Time.of(5, TimeUnit.MINUTES),
                Time.of(10, TimeUnit.SECONDS)));
        //env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 5000L));
        //状态后端:
        env.setStateBackend(new FsStateBackend("hdfs://hadoop102:8020/gmall/checkpoint/base_db_app_restart_test"));
        // 访问hdfs访问权限问题
        // 报错异常:Permission denied: user=haowu, access=WRITE, inode="/":atguigu:supergroup:drwxr-xr-x
        // 解决:/根目录没有写权限 解决方案1.hadoop fs -chown 777 /   2.System.setProperty("HADOOP_USER_NAME", "atguigu");
        System.setProperty("HADOOP_USER_NAME", "atguigu");

        // TODO 2.获取kafka的ods层业务数据:ods_basic_db
        String ods_db_topic = "ods_base_db";
        FlinkKafkaConsumer<String> kafkaConsumer = MyKafkaUtil.getKafkaConsumer("hadoop102:9092", ods_db_topic, "ods_base_db_consumer_test", "false", "latest");
        DataStreamSource<String> jsonStrDS = env.addSource(kafkaConsumer);
        jsonStrDS.print("转换前>>>>");
        // TODO 3.对jsonStrDS结构转换
        SingleOutputStreamOperator<JSONObject> jsonDS = jsonStrDS.map(new MapFunction<String, JSONObject>() {
            @Override
            public JSONObject map(String jsonStr) throws Exception {
                //TODO 模拟程序异常
                System.out.println(5 / 0);
                return JSON.parseObject(jsonStr);
            }
        });
        jsonDS.print("转换后>>>>");
        // TODO 4. 执行
        env.execute();
    }
}

手机扫一扫

移动阅读更方便

阿里云服务器
腾讯云服务器
七牛云服务器

你可能感兴趣的文章