mxnet60分钟入门Gluon教程代码下载,适合做过深度学习的人使用。入门教程地址: https://beta.mxnet.io/guide/getting-started/crash-course/index.html mxnet安装方法:pip install mxnet
ndarray类似numpy,在mxnet下通过ndarray处理数据,ndarry类似与numpy。
# pip install -U mxnet 安装mxnet库
# 如
from mxnet import nd
# jupyter 多行输出
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
基本操作
# 建立2行3列的矩阵
nd.array(((1,2,3),(5,6,7)))
[[1. 2. 3.]
[5. 6. 7.]]
<NDArray 2x3 @cpu(0)>
# 建立2行3列的矩阵,用1填充
x = nd.ones((2,3))
x
[[1. 1. 1.]
[1. 1. 1.]]
<NDArray 2x3 @cpu(0)>
# 建立2行3列的矩阵,用随机数填充
y = nd.random.uniform(-1,1,(2,3))
y
[[0.09762704 0.18568921 0.43037868]
[0.6885315 0.20552671 0.71589124]]
<NDArray 2x3 @cpu(0)>
# 建立2行3列的矩阵,用2.0填充
x = nd.full((2,3), 2.0)
x
[[2. 2. 2.]
[2. 2. 2.]]
<NDArray 2x3 @cpu(0)>
# 查看变量x的维度,大小,类型
(x.shape, x.size, x.dtype)
((2, 3), 6, numpy.float32)
运算
# 对应元素相乘
x * y
[[0.19525409 0.37137842 0.86075735]
[1.377063 0.41105342 1.4317825 ]]
<NDArray 2x3 @cpu(0)>
# 返回e的y幂次方
y.exp()
[[1.1025515 1.204048 1.5378398]
[1.9907899 1.2281718 2.0460093]]
<NDArray 2x3 @cpu(0)>
# 将y转置后进行x,y矩阵乘法
nd.dot(x, y.T)
[[1.4273899 3.219899 ]
[1.4273899 3.219899 ]]
<NDArray 2x2 @cpu(0)>
切片
# 读取第2第3个数的值,nd序号从0开始
y[1,2]
[0.71589124]
<NDArray 1 @cpu(0)>
# 读取第2列到第3列的值
y[:,1:3]
[[0.18568921 0.43037868]
[0.20552671 0.71589124]]
<NDArray 2x2 @cpu(0)>
# 读取第2列到第3列的值,并将赋值为4
y[:,1:3] = 4
y
[[0.09762704 4. 4. ]
[0.6885315 4. 4. ]]
<NDArray 2x3 @cpu(0)>
mxnet的ndarry与numpy互相转换
# 将x转换为numpy格式
a = x.asnumpy()
(type(a), a)
(numpy.ndarray, array([[2., 2., 2.],
[2., 2., 2.]], dtype=float32))
# 将numpy数组转换ndarray格式
nd.array(a)
[[2. 2. 2.]
[2. 2. 2.]]
<NDArray 2x3 @cpu(0)>
Gluon包是MXNet的高级封装接口,易于使用,同时保持了底层API的大部分灵活性。Gluon包为深入学习提供了一个清晰、简洁、简单的API。它使得在不牺牲训练速度的情况下,使得建立和训练深度学习模型更加容易。
from mxnet import nd
# 载入gluon包
from mxnet.gluon import nn
# 建立输出节点为2的全连接层(dense层,类似keras)
layer = nn.Dense(2)
layer
Dense(None -> 2, linear)
# 使用默认的方法初始权重
layer.initialize()
# 生成3行4列的矩阵
x = nd.random.uniform(-1,1,(3,4))
# 输入x到layer层
layer(x)
[[ 0.0009278 -0.00674768]
[-0.02683341 0.00671751]
[ 0.00798804 0.02131375]]
<NDArray 3x2 @cpu(0)>
# 打印权重数据
layer.weight.data()
[[-0.01631819 -0.00312688 0.0408415 0.04370362]
[ 0.00404529 -0.0028032 0.00952624 -0.01501013]]
<NDArray 2x4 @cpu(0)>
# 建立一个Sequential序贯模型
# nn.Sequential用法类似与nn.Dense,但都是nn.Block的子类
net = nn.Sequential()
# Add a sequence of layers.
# lenet,用到了卷积层,池化层,全连接层
net.add(# Similar to Dense, it is not necessary to specify the input channels
# by the argument `in_channels`, which will be automatically inferred
# in the first forward pass. Also, we apply a relu activation on the
# output. In addition, we can use a tuple to specify a non-square
# kernel size, such as `kernel_size=(2,4)`
nn.Conv2D(channels=6, kernel_size=5, activation='relu'),
# One can also use a tuple to specify non-symmetric pool and stride sizes
nn.MaxPool2D(pool_size=2, strides=2),
nn.Conv2D(channels=16, kernel_size=3, activation='relu'),
nn.MaxPool2D(pool_size=2, strides=2),
# The dense layer will automatically reshape the 4-D output of last
# max pooling layer into the 2-D shape: (x.shape[0], x.size/x.shape[0])
nn.Dense(120, activation="relu"),
nn.Dense(84, activation="relu"),
nn.Dense(10))
net
Sequential(
(0): Conv2D(None -> 6, kernel_size=(5, 5), stride=(1, 1), Activation(relu))
(1): MaxPool2D(size=(2, 2), stride=(2, 2), padding=(0, 0), ceil_mode=False, global_pool=False, pool_type=max, layout=NCHW)
(2): Conv2D(None -> 16, kernel_size=(3, 3), stride=(1, 1), Activation(relu))
(3): MaxPool2D(size=(2, 2), stride=(2, 2), padding=(0, 0), ceil_mode=False, global_pool=False, pool_type=max, layout=NCHW)
(4): Dense(None -> 120, Activation(relu))
(5): Dense(None -> 84, Activation(relu))
(6): Dense(None -> 10, linear)
)
# 初始化网络
net.initialize()
# Input shape is (batch_size, color_channels, height, width)
x = nd.random.uniform(shape=(4,1,28,28))
y = net(x)
y.shape
(4, 10)
# 输出第一层权重的维度以及第6层偏置的维度
(net[0].weight.data().shape, net[5].bias.data().shape)
((6, 1, 5, 5), (84,))
通过nn.Block创建一个更加灵活的神经网络结构,主要有两部分:
__ init __ create the layers 创建层
forward define the forward function 确定前向传播层函数功能
class MixMLP(nn.Block):
def init(self, kwargs):
# Run nn.Block
's init method
super(MixMLP, self).init(kwargs)
self.blk = nn.Sequential()
self.blk.add(nn.Dense(3, activation='relu'),
nn.Dense(4, activation='relu'))
self.dense = nn.Dense(5)
def forward(self, x):
y = nd.relu(self.blk(x))
print(y)
return self.dense(y)
net = MixMLP()
net
MixMLP(
(blk): Sequential(
(0): Dense(None -> 3, Activation(relu))
(1): Dense(None -> 4, Activation(relu))
)
(dense): Dense(None -> 5, linear)
)
net.initialize()
x = nd.random.uniform(shape=(2,2))
net(x)
[[0. 0. 0. 0.]
[0. 0. 0. 0.]]
[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]
net.blk[1].weight.data()
[[-0.02634858 0.05334064 0.02748809]
[ 0.06669661 -0.01711474 0.01647211]
[-0.04485548 0.00594983 -0.06654498]
[ 0.04964591 -0.06058505 0.03413684]]
本节我们将导入数据,建立网络模型,并进行训练。最后通过matplotlib进行绘图和基准测试benchmarking
# Uncomment the following line if matplotlib is not installed.
# !pip install matplotlib
from mxnet import nd, gluon, init, autograd
from mxnet.gluon import nn
from mxnet.gluon.data.vision import datasets, transforms
from IPython import display
import matplotlib.pyplot as plt
import time
手写数字mnist数据集是深度学习中最常用的数据集之一。但要得到99%的准确度太简单了。这里我们使用了一个类似但稍微复杂的数据集,叫做FashionMNIST。目标不再是对数字进行分类,而是对服装类型进行分类。数据集可以通过Gluon的data.vision.datases模块自动下载。
mnist_train = datasets.FashionMNIST(train=True)
X, y = mnist_train[0]
#FashioniMMIST图像为28*28d的灰度图,y为类别标签
('X shape: ', X.shape, 'X dtype', X.dtype, 'y:', y)
('X shape: ', (28, 28, 1), 'X dtype', numpy.uint8, 'y:', 2)
# text_labels为分类名
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
# 提取前十个数据
X, y = mnist_train[0:10]
# plot images
# 以png格式显示图片
display.set_matplotlib_formats('png')
_, figs = plt.subplots(1, X.shape[0], figsize=(15, 15))
for f,x,yi in zip(figs, X,y):
# 3D->2D by removing the last channel dim
f.imshow(x.reshape((28,28)).asnumpy())
ax = f.axes
ax.set_title(text_labels[int(yi)])
ax.title.set_fontsize(14)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show();
为了将图像输入Gulon模型,我们用ToTensor将图像转换为浮点数据,同时对其进行标准化,标准化均值和方差分别为0.13和0.31
transformer = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(0.13, 0.31)])
mnist_train = mnist_train.transform_first(transformer)
为了使得训练效果更好,我们将打乱数据,同时设定num_workers=4即四个线程来设置读取数据的进程数,目的是:用多进程加速数据的读取
batch_size = 256
train_data = gluon.data.DataLoader(
mnist_train, batch_size=batch_size, shuffle=True, num_workers=4)
返回的train_data是一个包含图像和其对应标签的iterable object
# 打印数据
for data, label in train_data:
print(data.shape, label.shape)
break
(256, 1, 28, 28) (256,)
最后我们创建验证集数据
mnist_valid = gluon.data.vision.FashionMNIST(train=False)
valid_data = gluon.data.DataLoader(
mnist_valid.transform_first(transformer),
batch_size=batch_size, num_workers=4)
我们建立一个模型,用常用的Xavier法来初始化
net = nn.Sequential()
net.add(nn.Conv2D(channels=6, kernel_size=5, activation='relu'),
nn.MaxPool2D(pool_size=2, strides=2),
nn.Conv2D(channels=16, kernel_size=3, activation='relu'),
nn.MaxPool2D(pool_size=2, strides=2),
nn.Flatten(),
nn.Dense(120, activation="relu"),
nn.Dense(84, activation="relu"),
nn.Dense(10))
net.initialize(init=init.Xavier())
# 定义loss
softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()
# 定义训练器,设定学习率为0.1
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1})
# 我们创造一个辅助函数来计算精度
def acc(output, label):
# output: (batch, num_output) float32 ndarray
# label: (batch, ) int32 ndarray
# asscalar()表示返回值的标量
return (output.argmax(axis=1) == label.astype('float32')).mean().asscalar()
# 训练网络2个epochs
for epoch in range(2):
train_loss, train_acc, valid_acc = 0., 0., 0.
tic = time.time()
for data, label in train_data:
# forward + backward
with autograd.record():
output = net(data)
loss = softmax_cross_entropy(output, label)
loss.backward()
# update parameters
trainer.step(batch_size)
# calculate training metrics
# 计算loss
train_loss += loss.mean().asscalar()
# 计算acc
train_acc += acc(output, label)
# calculate validation accuracy
for data, label in valid_data:
valid_acc += acc(net(data), label)
print("Epoch %d: loss %.3f, train acc %.3f, test acc %.3f, in %.1f sec" % (
epoch, train_loss/len(train_data), train_acc/len(train_data),
valid_acc/len(valid_data), time.time()-tic))
Epoch 0: loss 0.730, train acc 0.728, test acc 0.812, in 18.5 sec
Epoch 1: loss 0.463, train acc 0.828, test acc 0.856, in 18.6 sec
# 保存模型参数
net.save_parameters('net.params')
from mxnet import nd
from mxnet import gluon
from mxnet.gluon import nn
from mxnet.gluon.data.vision import datasets, transforms
from IPython import display
import matplotlib.pyplot as plt
# 导入网络结构
net = nn.Sequential()
net.add(nn.Conv2D(channels=6, kernel_size=5, activation='relu'),
nn.MaxPool2D(pool_size=2, strides=2),
nn.Conv2D(channels=16, kernel_size=3, activation='relu'),
nn.MaxPool2D(pool_size=2, strides=2),
nn.Flatten(),
nn.Dense(120, activation="relu"),
nn.Dense(84, activation="relu"),
nn.Dense(10))
# 导入模型
net.load_parameters('net.params')
# 设置训练数据的处理信息
transformer = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(0.13, 0.31)])
# 图像预测
mnist_valid = datasets.FashionMNIST(train=False)
X, y = mnist_valid[:10]
preds = []
for x in X:
x = transformer(x).expand_dims(axis=0)
pred = net(x).argmax(axis=1)
preds.append(pred.astype('int32').asscalar())
# 可视化预测结果
_, figs = plt.subplots(1, 10, figsize=(15, 15))
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
display.set_matplotlib_formats('png')
for f,x,yi,pyi in zip(figs, X, y, preds):
f.imshow(x.reshape((28,28)).asnumpy())
ax = f.axes
ax.set_title(text_labels[yi]+'\n'+text_labels[pyi])
ax.title.set_fontsize(14)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show();
from mxnet.gluon.model_zoo import vision as models
from mxnet.gluon.utils import download
from mxnet import image
# 从预训练的Gluon模型预测图像
net = models.resnet50_v2(pretrained=True)
# 获得标签文件
url = 'http://data.mxnet.io/models/imagenet/synset.txt'
fname = download(url)
with open(fname, 'r') as f:
text_labels = [' '.join(l.split()[1:]) for l in f]
# 随机下载狗的文件
url = 'https://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/\
Golden_Retriever_medium-to-light-coat.jpg/\
365px-Golden_Retriever_medium-to-light-coat.jpg'
fname = download(url)
x = image.imread(fname)
# 将获得的图像变为224大小
x = image.resize_short(x, 256)
x, _ = image.center_crop(x, (224,224))
plt.imshow(x.asnumpy())
plt.show();
# 设置数据处理方式
def transform(data):
data = data.transpose((2,0,1)).expand_dims(axis=0)
rgb_mean = nd.array([0.485, 0.456, 0.406]).reshape((1,3,1,1))
rgb_std = nd.array([0.229, 0.224, 0.225]).reshape((1,3,1,1))
return (data.astype('float32') / 255 - rgb_mean) / rgb_std
# 结果分类,并输出top5结果
prob = net(transform(x)).softmax()
idx = prob.topk(k=5)[0]
for i in idx:
i = int(i.asscalar())
print('With prob = %.5f, it contains %s' % (
prob[0,i].asscalar(), text_labels[i]))
With prob = 0.98240, it contains golden retriever
With prob = 0.00809, it contains English setter
With prob = 0.00262, it contains Irish setter, red setter
With prob = 0.00223, it contains cocker spaniel, English cocker spaniel, cocker
With prob = 0.00177, it contains Labrador retriever
手机扫一扫
移动阅读更方便
你可能感兴趣的文章