import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def add_layer(inputs, in_size, out_size, activation_function = None):
with tf.name_scope('layer'):
with tf.name\_scope('Weights'):
Weights = tf.Variable(tf.random\_normal(\[in\_size, out\_size\]), name='W') # hang lie
with tf.name\_scope('biases'):
biases = tf.Variable(tf.zeros(\[1, out\_size\]) + 0.1, name = 'b')
with tf.name\_scope('Wx\_plus\_b'):
Wx\_plus\_b = tf.matmul(inputs, Weights) + biases
if activation\_function is None:
outputs = Wx\_plus\_b
else:
outputs = activation\_function(Wx\_plus\_b)
return outputs
#define placeholder
with tf.name_scope('inputs'):
xs = tf.placeholder(tf.float32, [None, 1], name = 'x_input')
ys = tf.placeholder(tf.float32, [None, 1], name = 'y_input')
#add hidden layer
l1 = add_layer(xs, 1, 10, activation_function = tf.nn.relu)
#add output layer
prediction = add_layer(l1, 10, 1, activation_function = None)
#the error between prediction and real data
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1] ))
with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
sess = tf.Session()
writer = tf.summary.FileWriter("logs/", sess.graph)
#import step
sess.run(tf.global_variables_initializer() )
注意:有些浏览器可能支持的不好,推荐使用最新的Chrome
命令行输入:
tensorboard --logdir=logs/
手机扫一扫
移动阅读更方便
你可能感兴趣的文章