自动驾驶运动规划-Reeds Shepp曲线
阅读原文时间:2023年07月08日阅读:2

自动驾驶运动规划-Reeds Shepp曲线

相比于Dubins Car只允许车辆向前运动,Reeds Shepp Car既允许车辆向前运动,也允许车辆向后运动。

Reeds Shepp Car运动规划

车辆运动模型仍然采用Simple Car Model,但增加对车辆运动方向的描述,运动方程如下:

其中,。当时,表示车辆向前运动;时,表示车辆向后运动。

J Reeds和L Shepp证明Reeds Shepp Car从起点到终点的最短路径一定是下面的word的其中之一。word中的"|"表示车辆运动朝向由正向转为反向或者由反向转为正向。

图片来源:Planning Algorithm,http://planning.cs.uiuc.edu/node822.html

每个word都由这六种primitives组成,其中表示车辆左转前进;表示车辆左转后退;表示车辆右转前进;表示车辆右转后退;表示车辆直行前进;表示车辆直行后退。

Reeds and Shepp曲线的word所有组合不超过48种,所有的组合一一枚举如下:

图片来源:Planning Algorithm,http://planning.cs.uiuc.edu/node822.html

车辆的起点和终点的位置姿态是难以穷举的,所以一般在计算之前,会将车辆的姿态归一化:

起始姿态:

目标姿态:;其中,

车辆的转弯半径: r = 1;

假设车辆的初始姿态为,目标姿态,车辆的转向半径为r = ,如何实现姿态的归一化呢,实际上归一化的过程就是向量的平移和旋转过程。归一化:为了方便起见Reeds-Shepp中最小转向半径强制设置为1,如果车辆的实际最小转向半径不是1,可也通过适当放缩终点坐标来计算该曲线。比如如果一个车辆的最小转向半径为10,终点坐标为x,y,如果我们在计算曲线的时候将终点设为x/10,y/10,计算所得路径放大10倍曲线的转向半径就是10,终点也是x,y,所得曲线就是我们所期望曲线。

首先将向量平移到坐标原点(0,0)。平移到O(0, 0),平移向量为;对应用同样的平移向量:,最后得到平移后的向量:

应用旋转矩阵,将车辆的起点朝向转到x轴正向:

旋转之后,目标位置朝向更新为

将车辆转向半径缩放到1,于是最终得到车辆运动的起始姿态:

目标姿态:

代码如下:

double x1 = s1->getX(), y1 = s1->getY(), th1 = s1->getYaw();
double x2 = s2->getX(), y2 = s2->getY(), th2 = s2->getYaw();
double dx = x2 - x1, dy = y2 - y1, c = cos(th1), s = sin(th1);
double x = c * dx + s * dy, y = -s * dx + c * dy, phi = th2 - th1;

return ::reedsShepp(x / rho_, y / rho_, phi)

Reeds Shepp曲线有48种组合,编程时一一编码计算比较麻烦,因此可以利用其对称性降低求解工作量。

以转向不同的CSC类型为例,它包含4种曲线类型:,我们只需要编码推导得到的计算过程,其它几种直接可以通过对称性关系得到车辆运动路径。

给定车辆起始姿态,目标姿态,可以得到的运动路径如下:

{ Steering: left Gear: forward distance: 0.63 }
{ Steering: straight Gear: forward distance: 4.02 }
{ Steering: right Gear: forward distance: 0.11 }

对应的效果如下:

L^{+}S^{+}R^{+}

下面看看利用对称性求解其它几种路径的方法。

假设我们推导出从起始姿态达到目标姿态的路径计算方法:

path = calc_path()

利用对称性,将目标Pose修改为,代入同样的Path计算函数:

path = calc_path(, -, -)

就得到从类型的运动路径。

计算出的的车辆运动路径如下:

{ Steering: left Gear: backward distance: -2.85 }
{ Steering: straight Gear: backward distance: 4.02 }
{ Steering: right Gear: backward distance: -2.32 }

下面是车辆的运动效果,一路倒车进入另一个车位。

将目标姿态修改为,代入同样的Path计算函数:

path = calc_path(, -, -)

就得到从类型的运动路径。

计算出的的车辆运动路径如下:

{ Steering: right Gear: forward distance: -0.56 }
{ Steering: straight Gear: forward distance: 5.28 }
{ Steering: left Gear: forward distance: -0.03 }

下面是车辆先右转、再直行、再左转从一个车位进入另一个车位的运动效果。

R^{+}S^{+}L^{+}类型曲线

结合timeflip对称性和reflect对称性,将目标姿态修改为,代入同样的Path计算函数:

path = calc_path(, -, -)

就得到从类型的运动路径。

计算出的的车辆运动路径如下:

{ Steering: right Gear: backward distance: -1.86 }
{ Steering: straight Gear: backward distance: 5.28 }
{ Steering: left Gear: backward distance: -2.38 }

下面是车辆先右转、再直行、再左转,全程倒车从一个车位进入另一个车位的运动效果。

R^{-}S^{-}L^{-}类型曲线

通过对称性,48种不同的Reeds Shepp曲线通过不超过12个函数就可以得到全部运动路径。

1、Optimal paths for a car that goes both forwards and backwards, J Reeds, L Shepp - Pacific journal of mathematics, 1990

2、OMPL的Reeds Sheep实现代码。(https://ompl.kavrakilab.org/ReedsSheppStateSpace_8cpp_source.html)

3、Reeds Sheep的Python代码实现。(https://github.com/nathanlct/reeds-shepp-curves/blob/master/reeds_shepp.py)

转自:https://zhuanlan.zhihu.com/p/122544884

手机扫一扫

移动阅读更方便

阿里云服务器
腾讯云服务器
七牛云服务器

你可能感兴趣的文章